Papajams commited on
Commit
d460df4
1 Parent(s): dc9a1ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -33
app.py CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
2
  import requests
3
  import torch
4
  from transformers import AutoTokenizer, AutoModel
 
5
 
6
  # Load SciBERT pre-trained model and tokenizer
7
  model_name = "allenai/scibert_scivocab_uncased"
@@ -9,44 +10,59 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
  model = AutoModel.from_pretrained(model_name)
10
 
11
  def calculate_similarity(claim, document):
 
 
12
  # Tokenize claim and document
13
  inputs = tokenizer.encode_plus(claim, document, return_tensors='pt', padding=True, truncation=True)
14
 
15
- # Generate embeddings for claim and document
16
  with torch.no_grad():
17
  claim_embeddings = model(**inputs)['pooler_output']
18
 
 
 
 
 
 
19
  # Compute cosine similarity between embeddings
20
  similarity = torch.cosine_similarity(claim_embeddings, document_embeddings).item()
21
 
22
  return similarity
23
 
24
- def search_papers(user_input):
25
- # Implement your code to fetch search results from the desired source (e.g., arXiv, Semantic Scholar)
26
- # ...
 
 
 
 
 
 
 
 
27
 
28
- # For the purpose of this example, we'll use dummy data
29
- search_results = [
30
- {
31
- 'title': 'Paper 1 Title',
32
- 'abstract': 'Paper 1 Abstract',
33
- 'authors': ['Author 1', 'Author 2'],
34
- 'url': 'https://example.com/paper1'
35
- },
36
- {
37
- 'title': 'Paper 2 Title',
38
- 'abstract': 'Paper 2 Abstract',
39
- 'authors': ['Author 3', 'Author 4'],
40
- 'url': 'https://example.com/paper2'
41
- },
42
- {
43
- 'title': 'Paper 3 Title',
44
- 'abstract': 'Paper 3 Abstract',
45
- 'authors': ['Author 5', 'Author 6'],
46
- 'url': 'https://example.com/paper3'
47
- }
48
- ]
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  return search_results
51
 
52
  st.title('The Substantiator')
@@ -56,12 +72,13 @@ user_input = st.text_input('Input your claim')
56
  if st.button('Substantiate'):
57
  search_results = search_papers(user_input)
58
  if search_results is not None and len(search_results) > 0:
59
- for result in search_results:
60
- st.write(result["title"])
61
- st.write(result["abstract"])
62
- st.write("Authors: ", ", ".join(result["authors"]))
63
- similarity = calculate_similarity(user_input, result["abstract"])
64
- st.write("Similarity Score: ", similarity)
65
- st.write("-----")
 
66
  else:
67
- st.write("No results found.")
 
2
  import requests
3
  import torch
4
  from transformers import AutoTokenizer, AutoModel
5
+ import xml.etree.ElementTree as ET
6
 
7
  # Load SciBERT pre-trained model and tokenizer
8
  model_name = "allenai/scibert_scivocab_uncased"
 
10
  model = AutoModel.from_pretrained(model_name)
11
 
12
  def calculate_similarity(claim, document):
13
+ if not claim or not document:
14
+ return 0.0
15
  # Tokenize claim and document
16
  inputs = tokenizer.encode_plus(claim, document, return_tensors='pt', padding=True, truncation=True)
17
 
18
+ # Generate embeddings for claim
19
  with torch.no_grad():
20
  claim_embeddings = model(**inputs)['pooler_output']
21
 
22
+ # Generate embeddings for document
23
+ inputs_doc = tokenizer.encode_plus(document, return_tensors='pt', padding=True, truncation=True)
24
+ with torch.no_grad():
25
+ document_embeddings = model(**inputs_doc)['pooler_output']
26
+
27
  # Compute cosine similarity between embeddings
28
  similarity = torch.cosine_similarity(claim_embeddings, document_embeddings).item()
29
 
30
  return similarity
31
 
32
+ def search_arxiv(query, max_results=3):
33
+ base_url = "http://export.arxiv.org/api/query?"
34
+ query = f"search_query=all:{query}&start=0&max_results={max_results}&sortBy=relevance&sortOrder=descending"
35
+
36
+ try:
37
+ response = requests.get(base_url + query)
38
+ if response.status_code == 200:
39
+ data = response.text
40
+
41
+ # Parse the XML response
42
+ root = ET.fromstring(data)
43
 
44
+ search_results = []
45
+ for entry in root.findall("{http://www.w3.org/2005/Atom}entry"):
46
+ result = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ # Extract information from each entry
49
+ result["title"] = entry.find("{http://www.w3.org/2005/Atom}title").text
50
+ result["abstract"] = entry.find("{http://arxiv.org/schemas/atom}summary").text
51
+
52
+ authors = []
53
+ for author in entry.findall("{http://www.w3.org/2005/Atom}author"):
54
+ authors.append(author.find("{http://www.w3.org/2005/Atom}name").text)
55
+ result["authors"] = authors
56
+
57
+ search_results.append(result)
58
+
59
+ return search_results
60
+ except:
61
+ return None
62
+
63
+ def search_papers(user_input):
64
+ # Use the desired search function, e.g., search_arxiv
65
+ search_results = search_arxiv(user_input)
66
  return search_results
67
 
68
  st.title('The Substantiator')
 
72
  if st.button('Substantiate'):
73
  search_results = search_papers(user_input)
74
  if search_results is not None and len(search_results) > 0:
75
+ with st.spinner('Searching for relevant research papers...'):
76
+ for result in search_results:
77
+ st.write(f"<a href='javascript:void(0)' onclick='window.open(\"{result['link']}\", \"_blank\");return false;'>{result['title']}</a>", unsafe_allow_html=True)
78
+ st.write(result["abstract"])
79
+ st.write("Authors: ", ", ".join(result["authors"]))
80
+ similarity = calculate_similarity(user_input, result["abstract"])
81
+ st.write("Similarity Score: ", similarity)
82
+ st.write("-----")
83
  else:
84
+ st.write("No results found.")