import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.llms import HuggingFaceHub # from htmlTemplates import css,user_template,bot_template from langchain.embeddings import HuggingFaceEmbeddings def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text+=page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator = '\n', chunk_size = 1000, chunk_overlap = 200, # length_fucntion = len(text) ) chuncks = text_splitter.split_text(text) return chuncks def get_vectorstore(text_chunks): embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversations_chain(vectorstores): llm = HuggingFaceHub(repo_id ='mistralai/Mistral-7B-Instruct-v0.3',model_kwargs={"temperature":0.5, "max_length":512},huggingfacehub_api_token=API_KEY) memory = ConversationBufferMemory( memory_key = 'chat_history',return_messages = True ) conversation_chain = ConversationalRetrievalChain.from_llm( llm = llm, retriever = vectorstores.as_retriever(), memory = memory, ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question':user_question}) st.session_state.chat_history = response['chat_history'] for i,message in enumerate(st.session_state.chat_history): if i%2==0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") # st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversations_chain( vectorstore) if __name__ == '__main__': main()