Spaces:
Sleeping
Sleeping
ParthCodes
commited on
Commit
•
252fac8
1
Parent(s):
0a0964a
Upload 3 files
Browse files- Dockerfile +17 -0
- main.py +59 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Menggunakan base image Python 3.9
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Mengatur direktori kerja ke /code
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Menyalin requirements.txt ke /code
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
# Menginstal dependensi dari requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
12 |
+
|
13 |
+
# Menyalin seluruh konten proyek Anda ke /code
|
14 |
+
COPY . /code
|
15 |
+
|
16 |
+
# CMD untuk menjalankan Gunicorn
|
17 |
+
CMD ["gunicorn", "main:app", "-b", "0.0.0.0:7860"]
|
main.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
from flask_cors import CORS
|
5 |
+
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
app.static_folder = 'static'
|
9 |
+
app.static_url_path = '/static'
|
10 |
+
|
11 |
+
app.secret_key = "roadsense-abhi-2023"
|
12 |
+
|
13 |
+
CORS(app)
|
14 |
+
|
15 |
+
|
16 |
+
# Load the model
|
17 |
+
model = joblib.load('accident_prediction_model_Final.m5')
|
18 |
+
|
19 |
+
# Load the encoder
|
20 |
+
encoder = joblib.load('encoder.pkl')
|
21 |
+
|
22 |
+
@app.route('/', methods=['GET'])
|
23 |
+
def main():
|
24 |
+
return {'message': 'Hello, World'}
|
25 |
+
|
26 |
+
|
27 |
+
@app.route('/prediction', methods=['POST'])
|
28 |
+
def prediction():
|
29 |
+
data = request.get_json()
|
30 |
+
|
31 |
+
num_input = {'Latitude': data['Latitude'], 'Longitude': data['Longitude'], 'person_count': data['personCount']}
|
32 |
+
cat_input = {'weather_conditions': data['selectedWeatherCondition'], 'impact_type': data['selectedImpactType'],
|
33 |
+
'traffic_voilations': data['selectedTrafficViolationType'],
|
34 |
+
'road_features': data['selectedRoadFeaturesType'],
|
35 |
+
'junction_types': data['selectedRoadJunctionType'],
|
36 |
+
'traffic_controls': data['selectedTrafficControl'], 'time_day': data['selectedTimeOfDay'],
|
37 |
+
'age_group': data['selectedAge'], 'safety_features': data['selectedSafetyFeature'],
|
38 |
+
'injury': data['selectedInjuryType']}
|
39 |
+
|
40 |
+
input_df = pd.DataFrame([cat_input])
|
41 |
+
|
42 |
+
encoded_input = encoder['encoder'].transform(input_df)
|
43 |
+
encoded_input_df = pd.DataFrame(encoded_input, columns=encoder['encoded_columns'])
|
44 |
+
|
45 |
+
num_df = pd.DataFrame([num_input])
|
46 |
+
input_with_coords = pd.concat([num_df, encoded_input_df], axis=1)
|
47 |
+
|
48 |
+
# Make a prediction using the trained model
|
49 |
+
prediction = model.predict(input_with_coords)
|
50 |
+
|
51 |
+
temp = False
|
52 |
+
if prediction[0] == 1:
|
53 |
+
temp = True
|
54 |
+
|
55 |
+
return {'prediction': temp}
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
app.run()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-cors
|
3 |
+
gunicorn
|
4 |
+
Jinja2
|
5 |
+
pandas
|
6 |
+
scikit-learn
|