Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,669 Bytes
9346f1c 1f60a20 9346f1c 1f60a20 f90ad24 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c f90ad24 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c f90ad24 9346f1c f90ad24 9346f1c f90ad24 9346f1c f90ad24 1f60a20 f90ad24 1f60a20 f90ad24 9346f1c f90ad24 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import shutil
import numpy as np
import gradio as gr
from huggingface_hub import Repository, HfApi
from transformers import AutoConfig
import json
from apscheduler.schedulers.background import BackgroundScheduler
import pandas as pd
import datetime
from utils import get_eval_results_dicts, make_clickable_model
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
repo=None
if H4_TOKEN:
print("pulling repo")
# try:
# shutil.rmtree("./evals/")
# except:
# pass
repo = Repository(
local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset"
)
repo.git_pull()
# parse the results
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
def load_results(model, benchmark, metric):
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json")
if not os.path.exists(file_path):
return 0.0, None
with open(file_path) as fp:
data = json.load(fp)
accs = np.array([v[metric] for k, v in data["results"].items()])
mean_acc = np.mean(accs)
return mean_acc, data["config"]["model_args"]
def get_n_params(base_model):
# config = AutoConfig.from_pretrained(model_name)
# # Retrieve the number of parameters from the configuration
# try:
# num_params = config.n_parameters
# except AttributeError:
# print(f"Error: The number of parameters is not available in the config for the model '{model_name}'.")
# return None
# return num_params
now = datetime.datetime.now()
time_string = now.strftime("%Y-%m-%d %H:%M:%S")
return time_string
COLS = ["eval_name", "# params", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️", "base_model"]
TYPES = ["str","str", "number", "number", "number", "number", "number","markdown", ]
EVAL_COLS = ["model","# params", "private", "8bit_eval", "is_delta_weight", "status"]
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
def get_leaderboard():
if repo:
print("pulling changes")
repo.git_pull()
# entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests" or entry=="evals")]
# model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
# all_data = []
# for model in model_directories:
# model_data = {"base_model": None, "eval_name": model}
# for benchmark, metric in zip(BENCHMARKS, METRICS):
# value, base_model = load_results(model, benchmark, metric)
# model_data[BENCH_TO_NAME[benchmark]] = round(value,3)
# if base_model is not None: # in case the last benchmark failed
# model_data["base_model"] = base_model
# model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3)
# if model_data["base_model"] is not None:
# model_data["base_model"] = make_clickable_model(model_data["base_model"])
# model_data["# params"] = get_n_params(model_data["base_model"])
# if model_data["base_model"] is not None:
# all_data.append(model_data)
all_data = get_eval_results_dicts()
dataframe = pd.DataFrame.from_records(all_data)
dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
dataframe = dataframe[COLS]
return dataframe
def get_eval_table():
if repo:
print("pulling changes for eval")
repo.git_pull()
entries = [entry for entry in os.listdir("evals/eval_requests") if not entry.startswith('.')]
all_evals = []
for entry in entries:
print(entry)
if ".json"in entry:
file_path = os.path.join("evals/eval_requests", entry)
with open(file_path) as fp:
data = json.load(fp)
data["# params"] = get_n_params(data["model"])
data["model"] = make_clickable_model(data["model"])
all_evals.append(data)
else:
# this is a folder
sub_entries = [e for e in os.listdir(f"evals/eval_requests/{entry}") if not e.startswith('.')]
for sub_entry in sub_entries:
file_path = os.path.join("evals/eval_requests", entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data["# params"] = get_n_params(data["model"])
data["model"] = make_clickable_model(data["model"])
all_evals.append(data)
dataframe = pd.DataFrame.from_records(all_evals)
return dataframe[EVAL_COLS]
leaderboard = get_leaderboard()
eval_queue = get_eval_table()
def is_model_on_hub(model_name) -> bool:
try:
config = AutoConfig.from_pretrained(model_name)
return True
except Exception as e:
print("Could not get the model config from the hub")
print(e)
return False
def add_new_eval(model:str, private:bool, is_8_bit_eval: bool, is_delta_weight:bool):
# check the model actually exists before adding the eval
if not is_model_on_hub(model):
print(model, "not found on hub")
return
print("adding new eval")
eval_entry = {
"model" : model,
"private" : private,
"8bit_eval" : is_8_bit_eval,
"is_delta_weight" : is_delta_weight,
"status" : "PENDING"
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR=f"eval_requests/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
api = HfApi()
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path,
repo_id=LMEH_REPO,
token=H4_TOKEN,
repo_type="dataset",
)
def refresh():
return get_leaderboard(), get_eval_table()
block = gr.Blocks()
with block:
with gr.Row():
gr.Markdown(f"""
# 🤗 H4 Model Evaluation leaderboard using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> LMEH benchmark suite </a>.
Evaluation is performed against 4 popular benchmarks AI2 Reasoning Challenge, HellaSwag, MMLU, and TruthFul QC MC. To run your own benchmarks, refer to the README in the H4 repo.
""")
with gr.Row():
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS,
datatype=TYPES, max_rows=5)
with gr.Row():
gr.Markdown(f"""
# Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the 🤗 cluster
""")
with gr.Row():
eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS,
datatype=EVAL_TYPES, max_rows=5)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table, eval_table])
with gr.Accordion("Submit a new model for evaluation"):
# with gr.Row():
# gr.Markdown(f"""# Submit a new model for evaluation""")
with gr.Row():
model_name_textbox = gr.Textbox(label="model_name")
is_8bit_toggle = gr.Checkbox(False, label="8 bit Eval?")
private = gr.Checkbox(False, label="Private?")
is_delta_weight = gr.Checkbox(False, label="Delta Weights?")
with gr.Row():
submit_button = gr.Button("Submit Eval")
submit_button.click(add_new_eval, [model_name_textbox, is_8bit_toggle, private, is_delta_weight])
print("adding refresh leaderboard")
def refresh_leaderboard():
leaderboard_table = get_leaderboard()
print("leaderboard updated")
scheduler = BackgroundScheduler()
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
scheduler.start()
block.launch() |