File size: 12,598 Bytes
02c4dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from typing import Any, Optional, List, Dict, Tuple
import threading
import cv2
import numpy
import onnxruntime

import facefusion.globals
from facefusion.face_cache import get_faces_cache, set_faces_cache
from facefusion.face_helper import warp_face, create_static_anchors, distance_to_kps, distance_to_bbox, apply_nms
from facefusion.typing import Frame, Face, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelValue, Bbox, Kps, Score, Embedding
from facefusion.utilities import resolve_relative_path, conditional_download
from facefusion.vision import resize_frame_dimension

FACE_ANALYSER = None
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
THREAD_LOCK : threading.Lock = threading.Lock()
MODELS : Dict[str, ModelValue] =\
{
	'face_detector_retinaface':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx',
		'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
	},
	'face_detector_yunet':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx',
		'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx')
	},
	'face_recognizer_arcface_blendface':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
		'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
	},
	'face_recognizer_arcface_inswapper':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
		'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
	},
	'face_recognizer_arcface_simswap':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx',
		'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
	},
	'gender_age':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx',
		'path': resolve_relative_path('../.assets/models/gender_age.onnx')
	}
}


def get_face_analyser() -> Any:
	global FACE_ANALYSER

	with THREAD_LOCK:
		if FACE_ANALYSER is None:
			if facefusion.globals.face_detector_model == 'retinaface':
				face_detector = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = facefusion.globals.execution_providers)
			if facefusion.globals.face_detector_model == 'yunet':
				face_detector = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0))
			if facefusion.globals.face_recognizer_model == 'arcface_blendface':
				face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendface').get('path'), providers = facefusion.globals.execution_providers)
			if facefusion.globals.face_recognizer_model == 'arcface_inswapper':
				face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = facefusion.globals.execution_providers)
			if facefusion.globals.face_recognizer_model == 'arcface_simswap':
				face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = facefusion.globals.execution_providers)
			gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = facefusion.globals.execution_providers)
			FACE_ANALYSER =\
			{
				'face_detector': face_detector,
				'face_recognizer': face_recognizer,
				'gender_age': gender_age
			}
	return FACE_ANALYSER


def clear_face_analyser() -> Any:
	global FACE_ANALYSER

	FACE_ANALYSER = None


def pre_check() -> bool:
	if not facefusion.globals.skip_download:
		download_directory_path = resolve_relative_path('../.assets/models')
		model_urls =\
		[
			MODELS.get('face_detector_retinaface').get('url'),
			MODELS.get('face_detector_yunet').get('url'),
			MODELS.get('face_recognizer_arcface_inswapper').get('url'),
			MODELS.get('face_recognizer_arcface_simswap').get('url'),
			MODELS.get('gender_age').get('url')
		]
		conditional_download(download_directory_path, model_urls)
	return True


def extract_faces(frame: Frame) -> List[Face]:
	face_detector_width, face_detector_height = map(int, facefusion.globals.face_detector_size.split('x'))
	frame_height, frame_width, _ = frame.shape
	temp_frame = resize_frame_dimension(frame, face_detector_width, face_detector_height)
	temp_frame_height, temp_frame_width, _ = temp_frame.shape
	ratio_height = frame_height / temp_frame_height
	ratio_width = frame_width / temp_frame_width
	if facefusion.globals.face_detector_model == 'retinaface':
		bbox_list, kps_list, score_list = detect_with_retinaface(temp_frame, temp_frame_height, temp_frame_width, face_detector_height, face_detector_width, ratio_height, ratio_width)
		return create_faces(frame, bbox_list, kps_list, score_list)
	elif facefusion.globals.face_detector_model == 'yunet':
		bbox_list, kps_list, score_list = detect_with_yunet(temp_frame, temp_frame_height, temp_frame_width, ratio_height, ratio_width)
		return create_faces(frame, bbox_list, kps_list, score_list)
	return []


def detect_with_retinaface(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, face_detector_height : int, face_detector_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]:
	face_detector = get_face_analyser().get('face_detector')
	bbox_list = []
	kps_list = []
	score_list = []
	feature_strides = [ 8, 16, 32 ]
	feature_map_channel = 3
	anchor_total = 2
	prepare_frame = numpy.zeros((face_detector_height, face_detector_width, 3))
	prepare_frame[:temp_frame_height, :temp_frame_width, :] = temp_frame
	temp_frame = (prepare_frame - 127.5) / 128.0
	temp_frame = numpy.expand_dims(temp_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
	with THREAD_SEMAPHORE:
		detections = face_detector.run(None,
		{
			face_detector.get_inputs()[0].name: temp_frame
		})
	for index, feature_stride in enumerate(feature_strides):
		keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0]
		if keep_indices.any():
			stride_height = face_detector_height // feature_stride
			stride_width = face_detector_width // feature_stride
			anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
			bbox_raw = (detections[index + feature_map_channel] * feature_stride)
			kps_raw = detections[index + feature_map_channel * 2] * feature_stride
			for bbox in distance_to_bbox(anchors, bbox_raw)[keep_indices]:
				bbox_list.append(numpy.array(
				[
					bbox[0] * ratio_width,
					bbox[1] * ratio_height,
					bbox[2] * ratio_width,
					bbox[3] * ratio_height
				]))
			for kps in distance_to_kps(anchors, kps_raw)[keep_indices]:
				kps_list.append(kps * [ ratio_width, ratio_height ])
			for score in detections[index][keep_indices]:
				score_list.append(score[0])
	return bbox_list, kps_list, score_list


def detect_with_yunet(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]:
	face_detector = get_face_analyser().get('face_detector')
	face_detector.setInputSize((temp_frame_width, temp_frame_height))
	face_detector.setScoreThreshold(facefusion.globals.face_detector_score)
	bbox_list = []
	kps_list = []
	score_list = []
	with THREAD_SEMAPHORE:
		_, detections = face_detector.detect(temp_frame)
	if detections.any():
		for detection in detections:
			bbox_list.append(numpy.array(
			[
				detection[0] * ratio_width,
				detection[1] * ratio_height,
				(detection[0] + detection[2]) * ratio_width,
				(detection[1] + detection[3]) * ratio_height
			]))
			kps_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height])
			score_list.append(detection[14])
	return bbox_list, kps_list, score_list


def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], score_list : List[Score]) -> List[Face] :
	faces : List[Face] = []
	if facefusion.globals.face_detector_score > 0:
		keep_indices = apply_nms(bbox_list, 0.4)
		for index in keep_indices:
			bbox = bbox_list[index]
			kps = kps_list[index]
			score = score_list[index]
			embedding, normed_embedding = calc_embedding(frame, kps)
			gender, age = detect_gender_age(frame, kps)
			faces.append(Face(
				bbox = bbox,
				kps = kps,
				score = score,
				embedding = embedding,
				normed_embedding = normed_embedding,
				gender = gender,
				age = age
			))
	return faces


def calc_embedding(temp_frame : Frame, kps : Kps) -> Tuple[Embedding, Embedding]:
	face_recognizer = get_face_analyser().get('face_recognizer')
	crop_frame, matrix = warp_face(temp_frame, kps, 'arcface_v2', (112, 112))
	crop_frame = crop_frame.astype(numpy.float32) / 127.5 - 1
	crop_frame = crop_frame[:, :, ::-1].transpose(2, 0, 1)
	crop_frame = numpy.expand_dims(crop_frame, axis = 0)
	embedding = face_recognizer.run(None,
	{
		face_recognizer.get_inputs()[0].name: crop_frame
	})[0]
	embedding = embedding.ravel()
	normed_embedding = embedding / numpy.linalg.norm(embedding)
	return embedding, normed_embedding


def detect_gender_age(frame : Frame, kps : Kps) -> Tuple[int, int]:
	gender_age = get_face_analyser().get('gender_age')
	crop_frame, affine_matrix = warp_face(frame, kps, 'arcface_v2', (96, 96))
	crop_frame = numpy.expand_dims(crop_frame, axis = 0).transpose(0, 3, 1, 2).astype(numpy.float32)
	prediction = gender_age.run(None,
	{
		gender_age.get_inputs()[0].name: crop_frame
	})[0][0]
	gender = int(numpy.argmax(prediction[:2]))
	age = int(numpy.round(prediction[2] * 100))
	return gender, age


def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]:
	many_faces = get_many_faces(frame)
	if many_faces:
		try:
			return many_faces[position]
		except IndexError:
			return many_faces[-1]
	return None


def get_many_faces(frame : Frame) -> List[Face]:
	try:
		faces_cache = get_faces_cache(frame)
		if faces_cache:
			faces = faces_cache
		else:
			faces = extract_faces(frame)
			set_faces_cache(frame, faces)
		if facefusion.globals.face_analyser_order:
			faces = sort_by_order(faces, facefusion.globals.face_analyser_order)
		if facefusion.globals.face_analyser_age:
			faces = filter_by_age(faces, facefusion.globals.face_analyser_age)
		if facefusion.globals.face_analyser_gender:
			faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender)
		return faces
	except (AttributeError, ValueError):
		return []


def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]:
	many_faces = get_many_faces(frame)
	similar_faces = []
	if many_faces:
		for face in many_faces:
			if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
				current_face_distance = 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
				if current_face_distance < face_distance:
					similar_faces.append(face)
	return similar_faces


def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]:
	if order == 'left-right':
		return sorted(faces, key = lambda face: face.bbox[0])
	if order == 'right-left':
		return sorted(faces, key = lambda face: face.bbox[0], reverse = True)
	if order == 'top-bottom':
		return sorted(faces, key = lambda face: face.bbox[1])
	if order == 'bottom-top':
		return sorted(faces, key = lambda face: face.bbox[1], reverse = True)
	if order == 'small-large':
		return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1]))
	if order == 'large-small':
		return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1]), reverse = True)
	if order == 'best-worst':
		return sorted(faces, key = lambda face: face.score, reverse = True)
	if order == 'worst-best':
		return sorted(faces, key = lambda face: face.score)
	return faces


def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]:
	filter_faces = []
	for face in faces:
		if face.age < 13 and age == 'child':
			filter_faces.append(face)
		elif face.age < 19 and age == 'teen':
			filter_faces.append(face)
		elif face.age < 60 and age == 'adult':
			filter_faces.append(face)
		elif face.age > 59 and age == 'senior':
			filter_faces.append(face)
	return filter_faces


def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]:
	filter_faces = []
	for face in faces:
		if face.gender == 0 and gender == 'female':
			filter_faces.append(face)
		if face.gender == 1 and gender == 'male':
			filter_faces.append(face)
	return filter_faces