File size: 8,009 Bytes
5a8c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac68db
5a8c4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import shutil
import gradio as gr

# from cog import BasePredictor, Input, Path

import insightface
import onnxruntime
from insightface.app import FaceAnalysis
import cv2
import gfpgan
import tempfile
import time
import uuid
from typing import Any, Union
from loggers import logger, request_id as _request_id
import ssl
from datetime import datetime
import traceback
import torch
import os
import requests
import subprocess
import sys
from PIL import Image
import numpy as np

ssl._create_default_https_context = ssl._create_unverified_context

if sys.platform == 'darwin':
    cache_file_dir = '/tmp/file'
else:
    cache_file_dir = '/src/file'
# os.makedirs(cache_file_dir, exist_ok=True)


def img_url_to_local_path(img_url, file_path=None):
    filename = img_url.split('/')[-1]
    max_count = 3
    count = 0
    if file_path is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=filename)
        temp_file_name = temp_file.name
    else:
        temp_file_name = file_path
    while True:
        count += 1
        try:
            res = requests.get(img_url, timeout=60)
            res.raise_for_status()
            with open(temp_file_name, "wb") as f:
                f.write(res.content)
            return temp_file_name
        except Exception as e:
            logger.error(e)
        if count >= max_count:
            msg = f'request {max_count} time url: {img_url} failed, please check'
            logger.error(msg)
            raise Exception(msg)


def delete_files_day_ago(cache_days=10):
    command = f"find {cache_file_dir} -type f -ctime +{cache_days} -exec rm {{}} \;"
    result = subprocess.run(command, shell=True, capture_output=True, text=True)
    logger.info(result.stdout)


def image_format_by_path(image_path):
    image = Image.open(image_path)
    image_format = image.format
    if not image_format:
        image_format = 'jpg'
    elif image_format == "JPEG":
        image_format = 'jpg'
    else:
        image_format = image_format.lower()
    return image_format


def local_file_for_url(url, cache_days=10):
    filename = url.split('/')[-1]
    _, ext = filename.split('.')
    file_path = f'{cache_file_dir}/{filename}'
    if not os.path.exists(file_path):
        img_url_to_local_path(url, file_path)
        logger.info(f'download file to {file_path}')
        delete_files_day_ago(cache_days)
    else:
        logger.info(f'cache file {file_path}')
    return file_path


class Predictor:
    def __init__(self):
        self.det_thresh = 0.1

    def setup(self):
        self.face_swapper = insightface.model_zoo.get_model('cache/inswapper_128.onnx', providers=onnxruntime.get_available_providers())
        self.face_enhancer = gfpgan.GFPGANer(model_path='cache/GFPGANv1.4.pth', upscale=1)
        self.face_analyser = FaceAnalysis(name='buffalo_l')

    def get_face(self, img_data, image_type='target'):
        try:
            logger.info(self.det_thresh)
            self.face_analyser.prepare(ctx_id=0, det_thresh=0.5)
            if image_type == 'source':
                self.face_analyser.prepare(ctx_id=0, det_thresh=self.det_thresh)
            analysed = self.face_analyser.get(img_data)
            logger.info(f'face num: {len(analysed)}')
            if len(analysed) == 0:
                msg = 'no face'
                logger.error(msg)
                raise Exception(msg)
            largest = max(analysed, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
            return largest
        except Exception as e:
            logger.error(str(e))
            raise Exception(str(e))

    def enhance_face(self, target_face, target_frame, weight=0.5):
        start_x, start_y, end_x, end_y = map(int, target_face['bbox'])
        padding_x = int((end_x - start_x) * 0.5)
        padding_y = int((end_y - start_y) * 0.5)
        start_x = max(0, start_x - padding_x)
        start_y = max(0, start_y - padding_y)
        end_x = max(0, end_x + padding_x)
        end_y = max(0, end_y + padding_y)
        temp_face = target_frame[start_y:end_y, start_x:end_x]
        if temp_face.size:
            _, _, temp_face = self.face_enhancer.enhance(
                temp_face,
                paste_back=True,
                weight=weight
            )
            target_frame[start_y:end_y, start_x:end_x] = temp_face
        return target_frame

    def predict(
            self,
            source_image_path,
            target_image_path,
            enhance_face,
            # request_id: str = Input(description="request_id", default=""),
            # det_thresh: float = Input(description="det_thresh default 0.1", default=0.1),
            # local_target: Path = Input(description="local target image", default=None),
            # local_source: Path = Input(description="local source image", default=None),
            # cache_days: int = Input(description="cache days default 10", default=10),
            # weight: float = Input(description="weight default 0.5", default=0.5)

    ) -> Any:
        """Run a single prediction on the model"""
        request_id = None
        det_thresh = 0.1
        cache_days = 10
        weight = 0.5

        device = 'cuda' if torch.cuda.is_available() else 'mps'
        logger.info(f'device: {device}, det_thresh:{det_thresh}')

        try:
            self.det_thresh = det_thresh
            start_time = time.time()
            if not request_id:
                request_id = str(uuid.uuid4())
            _request_id.set(request_id)
            frame = cv2.imread(str(target_image_path))
            source_frame = cv2.imread(str(source_image_path))
            source_face = self.get_face(source_frame, image_type='source')
            target_face = self.get_face(frame)
            try:
                logger.info(f'{frame.shape}, {target_face.shape}, {source_face.shape}')
            except Exception as e:
                logger.error(f"printing shapes failed,  error:{str(e)}")
                raise Exception(str(e))
            ext = image_format_by_path(target_image_path)
            size = os.path.getsize(target_image_path)
            logger.info(f'origin {size/1024}k')
            result = self.face_swapper.get(frame, target_face, source_face, paste_back=True)
            if enhance_face:
                result = self.enhance_face(target_face, result, weight)
            # _, _, result = self.face_enhancer.enhance(
            #     result,
            #     paste_back=True
            # )
            out_path = f"{tempfile.mkdtemp()}/{uuid.uuid4()}.{ext}"
            cv2.imwrite(str(out_path), result)
            return Image.open(out_path) 

            size = os.path.getsize(out_path)
            logger.info(f'result {size / 1024}k')
            cost_time = time.time() - start_time
            logger.info(f'total time: {cost_time * 1000} ms')
            data = {'code': 200, 'msg': 'succeed', 'image': out_path, 'status': 'succeed'}
            return data
        except Exception as e:
            logger.error(traceback.format_exc())
            data = {'code': 500, 'msg': str(e), 'image': '', 'status': 'failed'}
            logger.error(f"{str(e)}")
            return data

def swap_faces(source_image_path, target_image_path, enhance_face):
    predictor = Predictor()
    predictor.setup()
    return predictor.predict(
        source_image_path,
        target_image_path,
        enhance_face
    )

if __name__ == "__main__":
    demo = gr.Interface(
      fn=swap_faces,
      inputs=[
          gr.Image(type="filepath"),
          gr.Image(type="filepath"),
          gr.Checkbox(label="Enhance Face", value=True),
        #   gr.Checkbox(label="Enhance Frame", value=True),
      ],
      outputs=[
          gr.Image(
            type="pil",
            show_download_button=True,
          )
      ],
      title="Swap Faces",
      allow_flagging="never"
    )
    demo.launch()