Spaces:
Paused
Paused
File size: 7,507 Bytes
094bf8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
from vllm import LLM, SamplingParams
import torch
import gradio as gr
import json
import os
import shutil
import requests
import chromadb
import pandas as pd
from chromadb.config import Settings
from chromadb.utils import embedding_functions
device = "cuda:0"
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="intfloat/multilingual-e5-base", device = "cuda")
client = chromadb.PersistentClient(path="education_corrected")
collection = client.get_collection(name="corrected", embedding_function = sentence_transformer_ef)
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
#Define variables
temperature=0.2
max_new_tokens=1000
top_p=0.92
repetition_penalty=1.7
model_name = "Pclanglais/Cassandre-Test"
llm = LLM(model_name, max_model_len=4096)
#Vector search over the database
def vector_search(collection, text):
results = collection.query(
query_texts=[text],
n_results=5,
)
document = []
document_html = []
id_list = ""
list_elm = 0
for ids in results["ids"][0]:
first_link = str(results["metadatas"][0][list_elm]["identifier"])
first_title = results["metadatas"][0][list_elm]["context"] + " " + results["documents"][0][list_elm]
list_elm = list_elm+1
document.append(first_link + " : " + first_title)
document_html.append('<div class="source" id="' + first_link + '"><p><b>' + first_link + "</b> : " + first_title + "</div>")
document = "\n\n".join(document)
document_html = '<div id="source_listing">' + "".join(document_html) + "</div>"
# Replace this with the actual implementation of the vector search
return document, document_html
#CSS for references formatting
css = """
.generation {
margin-left:2em;
margin-right:2em;
}
:target {
background-color: #CCF3DF; /* Change the text color to red */
}
.source {
float:left;
max-width:17%;
margin-left:2%;
}
.tooltip {
position: relative;
cursor: pointer;
font-variant-position: super;
color: #97999b;
}
.tooltip:hover::after {
content: attr(data-text);
position: absolute;
left: 0;
top: 120%; /* Adjust this value as needed to control the vertical spacing between the text and the tooltip */
white-space: pre-wrap; /* Allows the text to wrap */
width: 500px; /* Sets a fixed maximum width for the tooltip */
max-width: 500px; /* Ensures the tooltip does not exceed the maximum width */
z-index: 1;
background-color: #f9f9f9;
color: #000;
border: 1px solid #ddd;
border-radius: 5px;
padding: 5px;
display: block;
box-shadow: 0 4px 8px rgba(0,0,0,0.1); /* Optional: Adds a subtle shadow for better visibility */
}"""
#Curtesy of chatgpt
def format_references(text):
# Define start and end markers for the reference
ref_start_marker = '<ref text="'
ref_end_marker = '</ref>'
# Initialize an empty list to hold parts of the text
parts = []
current_pos = 0
ref_number = 1
# Loop until no more reference start markers are found
while True:
start_pos = text.find(ref_start_marker, current_pos)
if start_pos == -1:
# No more references found, add the rest of the text
parts.append(text[current_pos:])
break
# Add text up to the start of the reference
parts.append(text[current_pos:start_pos])
# Find the end of the reference text attribute
end_pos = text.find('">', start_pos)
if end_pos == -1:
# Malformed reference, break to avoid infinite loop
break
# Extract the reference text
ref_text = text[start_pos + len(ref_start_marker):end_pos].replace('\n', ' ').strip()
ref_text_encoded = ref_text.replace("&", "&").replace("<", "<").replace(">", ">")
# Find the end of the reference tag
ref_end_pos = text.find(ref_end_marker, end_pos)
if ref_end_pos == -1:
# Malformed reference, break to avoid infinite loop
break
# Extract the reference ID
ref_id = text[end_pos + 2:ref_end_pos].strip()
# Create the HTML for the tooltip
tooltip_html = f'<span class="tooltip" data-refid="{ref_id}" data-text="{ref_id}: {ref_text_encoded}"><a href="#{ref_id}">[' + str(ref_number) +']</a></span>'
parts.append(tooltip_html)
# Update current_pos to the end of the current reference
current_pos = ref_end_pos + len(ref_end_marker)
ref_number = ref_number + 1
# Join and return the parts
parts = ''.join(parts)
return parts
# Class to encapsulate the Falcon chatbot
class MistralChatBot:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def predict(self, user_message):
fiches, fiches_html = vector_search(collection, user_message)
sampling_params = SamplingParams(temperature=.7, top_p=.95, max_tokens=2000, presence_penalty = 1.5, stop = ["``"])
detailed_prompt = """<|im_start|>system
Tu es Cassandre, le chatbot de l'Éducation nationale qui donne des réponses sourcées.<|im_end|>
<|im_start|>user
Ecrit un texte référencé en réponse à cette question : """ + user_message + """
Les références doivent être citées de cette manière : texte rédigé<ref text=\"[passage pertinent dans la référence]\">[\"identifiant de la référence\"]</ref>Si les références ne permettent pas de répondre, qu'il n'y a pas de réponse.
Les cinq références disponibles : """ + fiches + "<|im_end|>\n<|im_start|>assistant\n"
prompts = [detailed_prompt]
outputs = llm.generate(prompts, sampling_params, use_tqdm = False)
generated_text = outputs[0].outputs[0].text
generated_text = '<h2 style="text-align:center">Réponse</h3>\n<div class="generation">' + format_references(generated_text) + "</div>"
fiches_html = '<h2 style="text-align:center">Sources</h3>\n' + fiches_html
return generated_text, fiches_html
# Create the Falcon chatbot instance
mistral_bot = MistralChatBot()
# Define the Gradio interface
title = "Motta"
description = "Le LLM répond à toutes les questions sur la SDN."
examples = [
[
"Comment garantir la paix universelle?", # user_message
0.7 # temperature
]
]
additional_inputs=[
gr.Slider(
label="Température",
value=0.2, # Default value
minimum=0.05,
maximum=1.0,
step=0.05,
interactive=True,
info="Des valeurs plus élevées donne plus de créativité, mais aussi d'étrangeté",
),
]
demo = gr.Blocks()
with gr.Blocks(theme='JohnSmith9982/small_and_pretty', css=css) as demo:
gr.HTML("""<h1 style="text-align:center">Motta</h1>""")
text_input = gr.Textbox(label="Votre question ou votre instruction.", type="text", lines=1)
text_button = gr.Button("Interroger Motta")
text_output = gr.HTML(label="La réponse de Motta")
embedding_output = gr.HTML(label="Les sources utilisées")
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output, embedding_output])
if __name__ == "__main__":
demo.queue().launch() |