Spaces:
Running
Running
File size: 1,261 Bytes
dee6d0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import os
from gradio_client import Client, file
# client = Client("Pendrokar/WhisperSpeech", hf_token=os.getenv('HF_TOKEN'))
# client = Client("collabora/WhisperSpeech")
# client = Client(src="https://collabora-whisperspeech.hf.space", max_workers=1, hf_token=os.getenv('HF_TOKEN'))
client = Client(src="collabora/WhisperSpeech", max_workers=1, hf_token=os.getenv('HF_TOKEN'))
# endpoints = client.view_api(all_endpoints=True, print_info=False, return_format='dict')
# print(endpoints)
def somefunc():
pass
result = client.predict(
# "/whisper_speech_demo",
# somefunc,
multilingual_text="Test.",
# speaker_audio=file('https://upload.wikimedia.org/wikipedia/commons/7/75/Winston_Churchill_-_Be_Ye_Men_of_Valour.ogg'),
speaker_audio=None,
# speaker_url=file('https://upload.wikimedia.org/wikipedia/commons/7/75/Winston_Churchill_-_Be_Ye_Men_of_Valour.ogg'),
# speaker_url="",
speaker_url=None,
cps=14,
api_name="/whisper_speech_demo",
# fn_index=0
)
# result = client.predict(
# ["Please surprise me and speak in whatever voice you enjoy.",
# None,
# 'https://cdn-uploads.huggingface.co/production/uploads/641de0213239b631552713e4/iKHHqWxWy6Zfmp6QP6CZZ.wav',
# 14],
# api_name="/whisper_speech_demo",
# fn_index=0
# ) |