mrfakename's picture
Update app.py
b0986f3 verified
raw
history blame
10.8 kB
import gradio as gr
import random
import os
import shutil
import pandas as pd
import sqlite3
from datasets import load_dataset
import threading
import time
from huggingface_hub import HfApi
DESCR = """
# TTS Arena
Vote on different speech synthesis models!
""".strip()
INSTR = """
## Instructions
* Listen to two anonymous models
* Vote on which one is more natural and realistic
* If there's a tie, click Skip
*IMPORTANT: Do not only rank the outputs based on naturalness. Also rank based on intelligibility (can you actually tell what they're saying?) and other factors (does it sound like a human?).*
**When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
""".strip()
request = ''
if os.getenv('HF_ID'):
request = f"""
### Request Model
Please fill out [this form](https://huggingface.co/spaces/{os.getenv('HF_ID')}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model.
"""
ABOUT = f"""
## About
TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSys.
{request}
""".strip()
LDESC = """
## Leaderboard
A list of the models, based on how highly they are ranked!
""".strip()
dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN'))
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
model_names = {
'styletts2': 'StyleTTS 2',
'tacotron': 'Tacotron',
'tacotronph': 'Tacotron Phoneme',
'tacotrondca': 'Tacotron DCA',
'speedyspeech': 'Speedy Speech',
'overflow': 'Overflow TTS',
'vits': 'VITS',
'vitsneon': 'VITS Neon',
'neuralhmm': 'Neural HMM',
'glow': 'Glow TTS',
'fastpitch': 'FastPitch',
'jenny': 'Jenny',
'tortoise': 'Tortoise TTS',
'xtts2': 'XTTSv2',
'xtts': 'XTTS',
'elevenlabs': 'ElevenLabs',
'speecht5': 'SpeechT5',
}
def get_random_split(existing_split=None):
choice = random.choice(list(dataset.keys()))
if existing_split and choice == existing_split:
return get_random_split(choice)
else:
return choice
def get_db():
return sqlite3.connect('database.db')
def create_db():
conn = get_db()
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS model (
name TEXT UNIQUE,
upvote INTEGER,
downvote INTEGER
);
''')
def get_data():
conn = get_db()
cursor = conn.cursor()
cursor.execute('SELECT name, upvote, downvote FROM model')
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
df['name'] = df['name'].replace(model_names)
df['votes'] = df['upvote'] + df['downvote']
# df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score
## ELO SCORE
df['score'] = 1200
for i in range(len(df)):
for j in range(len(df)):
if i != j:
expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
actual_a = df['upvote'][i] / df['votes'][i]
actual_b = df['upvote'][j] / df['votes'][j]
df.at[i, 'score'] += 32 * (actual_a - expected_a)
df.at[j, 'score'] += 32 * (actual_b - expected_b)
if df['votes'][j] < 3:
df.at[j, 'score'] -= (3 - df['votes'][j]) * 5
df['score'] = round(df['score'])
## ELO SCORE
df = df.sort_values(by='score', ascending=False)
# df = df[['name', 'score', 'upvote', 'votes']]
df = df[['name', 'score', 'votes']]
return df
def get_random_splits():
choice1 = get_random_split()
choice2 = get_random_split(choice1)
return (choice1, choice2)
def upvote_model(model):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
conn.commit()
cursor.close()
def downvote_model(model):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
conn.commit()
cursor.close()
def a_is_better(model1, model2):
if model1 and model2:
upvote_model(model1)
downvote_model(model2)
return reload(model1, model2)
def b_is_better(model1, model2):
if model1 and model2:
upvote_model(model2)
downvote_model(model1)
return reload(model1, model2)
def both_bad(model1, model2):
if model1 and model2:
downvote_model(model1)
downvote_model(model2)
return reload(model1, model2)
def both_good(model1, model2):
if model1 and model2:
upvote_model(model1)
upvote_model(model2)
return reload(model1, model2)
def reload(chosenmodel1=None, chosenmodel2=None):
# Select random splits
split1, split2 = get_random_splits()
d1, d2 = (dataset[split1], dataset[split2])
choice1, choice2 = (d1.shuffle()[0]['audio'], d2.shuffle()[0]['audio'])
if chosenmodel1 in model_names:
chosenmodel1 = model_names[chosenmodel1]
if chosenmodel2 in model_names:
chosenmodel2 = model_names[chosenmodel2]
out = [
(choice1['sampling_rate'], choice1['array']),
(choice2['sampling_rate'], choice2['array']),
split1,
split2
]
if chosenmodel1: out.append(f'This model was {chosenmodel1}')
if chosenmodel2: out.append(f'This model was {chosenmodel2}')
return out
with gr.Blocks() as leaderboard:
gr.Markdown(LDESC)
# df = gr.Dataframe(interactive=False, value=get_data())
df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[200, 50, 50])
leaderboard.load(get_data, outputs=[df])
with gr.Blocks() as vote:
gr.Markdown(INSTR)
with gr.Row():
gr.HTML('<div align="left"><h3>Model A</h3></div>')
gr.HTML('<div align="right"><h3>Model B</h3></div>')
model1 = gr.Textbox(interactive=False, visible=False)
model2 = gr.Textbox(interactive=False, visible=False)
# with gr.Group():
# with gr.Row():
# prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
# prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
# with gr.Row():
# aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
with gr.Group():
with gr.Row():
with gr.Column():
with gr.Group():
prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
with gr.Column():
with gr.Group():
prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
with gr.Row():
abetter = gr.Button("A is Better", variant='primary')
bbetter = gr.Button("B is Better", variant='primary')
with gr.Row():
bothbad = gr.Button("Both are Bad", scale=2)
skipbtn = gr.Button("Skip", scale=1)
bothgood = gr.Button("Both are Good", scale=2)
outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2]
abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2])
bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2])
skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2])
bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2])
bothgood.click(both_good, outputs=outputs, inputs=[model1, model2])
vote.load(reload, outputs=[aud1, aud2, model1, model2])
with gr.Blocks() as about:
gr.Markdown(ABOUT)
pass
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="TTS Leaderboard") as demo:
gr.Markdown(DESCR)
gr.TabbedInterface([vote, leaderboard, about], ['Vote', 'Leaderboard', 'About'])
def restart_space():
api = HfApi(
token=os.getenv('HF_TOKEN')
)
time.sleep(60 * 60) # Every hour
print("Syncing DB before restarting space")
api.upload_file(
path_or_fileobj='database.db',
path_in_repo='database.db',
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset'
)
print("Restarting space")
api.restart_space(repo_id=os.getenv('HF_ID'))
def sync_db():
api = HfApi(
token=os.getenv('HF_TOKEN')
)
while True:
time.sleep(60 * 5)
print("Uploading DB")
api.upload_file(
path_or_fileobj='database.db',
path_in_repo='database.db',
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset'
)
if os.getenv('HF_ID'):
restart_thread = threading.Thread(target=restart_space)
restart_thread.daemon = True
restart_thread.start()
if os.getenv('DATASET_ID'):
# Fetch DB
api = HfApi(
token=os.getenv('HF_TOKEN')
)
print("Downloading DB...")
try:
path = api.hf_hub_download(
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset',
filename='database.db',
cache_dir='./'
)
shutil.copyfile(path, 'database.db')
print("Downloaded DB")
except:
pass
# Update DB
db_thread = threading.Thread(target=sync_db)
db_thread.daemon = True
db_thread.start()
create_db()
demo.queue(api_open=False).launch(show_api=False)