Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 33,807 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
from typing import Dict, Tuple
import librosa
import numpy as np
import scipy.io.wavfile
import scipy.signal
import soundfile as sf
import torch
from torch import nn
# from TTS.tts.utils.helpers import StandardScaler
class StandardScaler:
"""StandardScaler for mean-scale normalization with the given mean and scale values."""
def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None:
self.mean_ = mean
self.scale_ = scale
def set_stats(self, mean, scale):
self.mean_ = mean
self.scale_ = scale
def reset_stats(self):
delattr(self, "mean_")
delattr(self, "scale_")
def transform(self, X):
X = np.asarray(X)
X -= self.mean_
X /= self.scale_
return X
def inverse_transform(self, X):
X = np.asarray(X)
X *= self.scale_
X += self.mean_
return X
class TorchSTFT(nn.Module): # pylint: disable=abstract-method
"""Some of the audio processing funtions using Torch for faster batch processing.
TODO: Merge this with audio.py
Args:
n_fft (int):
FFT window size for STFT.
hop_length (int):
number of frames between STFT columns.
win_length (int, optional):
STFT window length.
pad_wav (bool, optional):
If True pad the audio with (n_fft - hop_length) / 2). Defaults to False.
window (str, optional):
The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window"
sample_rate (int, optional):
target audio sampling rate. Defaults to None.
mel_fmin (int, optional):
minimum filter frequency for computing melspectrograms. Defaults to None.
mel_fmax (int, optional):
maximum filter frequency for computing melspectrograms. Defaults to None.
n_mels (int, optional):
number of melspectrogram dimensions. Defaults to None.
use_mel (bool, optional):
If True compute the melspectrograms otherwise. Defaults to False.
do_amp_to_db_linear (bool, optional):
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False.
spec_gain (float, optional):
gain applied when converting amplitude to DB. Defaults to 1.0.
power (float, optional):
Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Defaults to None.
use_htk (bool, optional):
Use HTK formula in mel filter instead of Slaney.
mel_norm (None, 'slaney', or number, optional):
If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization).
If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
See `librosa.util.normalize` for a full description of supported norm values
(including `+-np.inf`).
Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney".
"""
def __init__(
self,
n_fft,
hop_length,
win_length,
pad_wav=False,
window="hann_window",
sample_rate=None,
mel_fmin=0,
mel_fmax=None,
n_mels=80,
use_mel=False,
do_amp_to_db=False,
spec_gain=1.0,
power=None,
use_htk=False,
mel_norm="slaney",
):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.pad_wav = pad_wav
self.sample_rate = sample_rate
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.n_mels = n_mels
self.use_mel = use_mel
self.do_amp_to_db = do_amp_to_db
self.spec_gain = spec_gain
self.power = power
self.use_htk = use_htk
self.mel_norm = mel_norm
self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
self.mel_basis = None
if use_mel:
self._build_mel_basis()
def __call__(self, x):
"""Compute spectrogram frames by torch based stft.
Args:
x (Tensor): input waveform
Returns:
Tensor: spectrogram frames.
Shapes:
x: [B x T] or [:math:`[B, 1, T]`]
"""
if x.ndim == 2:
x = x.unsqueeze(1)
if self.pad_wav:
padding = int((self.n_fft - self.hop_length) / 2)
x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
# B x D x T x 2
x_device = x.device
o = torch.stft(
x.squeeze(1).to(self.window.device),
self.n_fft,
self.hop_length,
self.win_length,
self.window,
center=True,
pad_mode="reflect", # compatible with audio.py
normalized=False,
onesided=True,
return_complex=False,
)
M = o[:, :, :, 0]
P = o[:, :, :, 1]
S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))
if self.power is not None:
S = S ** self.power
if self.use_mel:
S = torch.matmul(self.mel_basis.to(self.window.device), S)
# S = torch.matmul(self.mel_basis, S)
if self.do_amp_to_db:
S = self._amp_to_db(S, spec_gain=self.spec_gain)
return S.to(x_device)
def _build_mel_basis(self):
mel_basis = librosa.filters.mel(
self.sample_rate,
self.n_fft,
n_mels=self.n_mels,
fmin=self.mel_fmin,
fmax=self.mel_fmax,
htk=self.use_htk,
norm=self.mel_norm,
)
self.mel_basis = torch.from_numpy(mel_basis).float()
@staticmethod
def _amp_to_db(x, spec_gain=1.0):
return torch.log(torch.clamp(x, min=1e-5) * spec_gain)
@staticmethod
def _db_to_amp(x, spec_gain=1.0):
return torch.exp(x) / spec_gain
# pylint: disable=too-many-public-methods
class AudioProcessor(object):
"""Audio Processor for TTS used by all the data pipelines.
TODO: Make this a dataclass to replace `BaseAudioConfig`.
Note:
All the class arguments are set to default values to enable a flexible initialization
of the class with the model config. They are not meaningful for all the arguments.
Args:
sample_rate (int, optional):
target audio sampling rate. Defaults to None.
resample (bool, optional):
enable/disable resampling of the audio clips when the target sampling rate does not match the original sampling rate. Defaults to False.
num_mels (int, optional):
number of melspectrogram dimensions. Defaults to None.
log_func (int, optional):
log exponent used for converting spectrogram aplitude to DB.
min_level_db (int, optional):
minimum db threshold for the computed melspectrograms. Defaults to None.
frame_shift_ms (int, optional):
milliseconds of frames between STFT columns. Defaults to None.
frame_length_ms (int, optional):
milliseconds of STFT window length. Defaults to None.
hop_length (int, optional):
number of frames between STFT columns. Used if ```frame_shift_ms``` is None. Defaults to None.
win_length (int, optional):
STFT window length. Used if ```frame_length_ms``` is None. Defaults to None.
ref_level_db (int, optional):
reference DB level to avoid background noise. In general <20DB corresponds to the air noise. Defaults to None.
fft_size (int, optional):
FFT window size for STFT. Defaults to 1024.
power (int, optional):
Exponent value applied to the spectrogram before GriffinLim. Defaults to None.
preemphasis (float, optional):
Preemphasis coefficient. Preemphasis is disabled if == 0.0. Defaults to 0.0.
signal_norm (bool, optional):
enable/disable signal normalization. Defaults to None.
symmetric_norm (bool, optional):
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else [0, k], Defaults to None.
max_norm (float, optional):
```k``` defining the normalization range. Defaults to None.
mel_fmin (int, optional):
minimum filter frequency for computing melspectrograms. Defaults to None.
mel_fmax (int, optional):
maximum filter frequency for computing melspectrograms. Defaults to None.
spec_gain (int, optional):
gain applied when converting amplitude to DB. Defaults to 20.
stft_pad_mode (str, optional):
Padding mode for STFT. Defaults to 'reflect'.
clip_norm (bool, optional):
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
griffin_lim_iters (int, optional):
Number of GriffinLim iterations. Defaults to None.
do_trim_silence (bool, optional):
enable/disable silence trimming when loading the audio signal. Defaults to False.
trim_db (int, optional):
DB threshold used for silence trimming. Defaults to 60.
do_sound_norm (bool, optional):
enable/disable signal normalization. Defaults to False.
do_amp_to_db_linear (bool, optional):
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
do_amp_to_db_mel (bool, optional):
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
do_rms_norm (bool, optional):
enable/disable RMS volume normalization when loading an audio file. Defaults to False.
db_level (int, optional):
dB level used for rms normalization. The range is -99 to 0. Defaults to None.
stats_path (str, optional):
Path to the computed stats file. Defaults to None.
verbose (bool, optional):
enable/disable logging. Defaults to True.
"""
def __init__(
self,
# sample_rate=None,
sample_rate=22050,
resample=False,
num_mels=None,
log_func="np.log10",
min_level_db=None,
frame_shift_ms=None,
frame_length_ms=None,
# hop_length=None,
hop_length=256,
# win_length=None,
win_length=1024,
ref_level_db=None,
fft_size=1024,
power=None,
preemphasis=0.0,
signal_norm=None,
symmetric_norm=None,
max_norm=None,
mel_fmin=None,
mel_fmax=None,
spec_gain=20,
stft_pad_mode="reflect",
clip_norm=True,
griffin_lim_iters=None,
do_trim_silence=False,
trim_db=60,
do_sound_norm=False,
do_amp_to_db_linear=True,
do_amp_to_db_mel=True,
do_rms_norm=False,
db_level=None,
stats_path=None,
verbose=True,
**_,
):
# setup class attributed
self.sample_rate = sample_rate
self.resample = resample
self.num_mels = num_mels
self.log_func = log_func
self.min_level_db = min_level_db or 0
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.ref_level_db = ref_level_db
self.fft_size = fft_size
self.power = power
self.preemphasis = preemphasis
self.griffin_lim_iters = griffin_lim_iters
self.signal_norm = signal_norm
self.symmetric_norm = symmetric_norm
self.mel_fmin = mel_fmin or 0
self.mel_fmax = mel_fmax
self.spec_gain = float(spec_gain)
self.stft_pad_mode = stft_pad_mode
self.max_norm = 1.0 if max_norm is None else float(max_norm)
self.clip_norm = clip_norm
self.do_trim_silence = do_trim_silence
self.trim_db = trim_db
self.do_sound_norm = do_sound_norm
self.do_amp_to_db_linear = do_amp_to_db_linear
self.do_amp_to_db_mel = do_amp_to_db_mel
self.do_rms_norm = do_rms_norm
self.db_level = db_level
self.stats_path = stats_path
# setup exp_func for db to amp conversion
if log_func == "np.log":
self.base = np.e
elif log_func == "np.log10":
self.base = 10
else:
raise ValueError(" [!] unknown `log_func` value.")
# setup stft parameters
if hop_length is None:
# compute stft parameters from given time values
self.hop_length, self.win_length = self._stft_parameters()
else:
# use stft parameters from config file
self.hop_length = hop_length
self.win_length = win_length
assert min_level_db != 0.0, " [!] min_level_db is 0"
assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size"
# members = vars(self)
# if verbose:
# print(" > Setting up Audio Processor...")
# for key, value in members.items():
# print(" | > {}:{}".format(key, value))
# create spectrogram utils
self.mel_basis = self._build_mel_basis()
self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
# setup scaler
if stats_path and signal_norm:
mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
self.signal_norm = True
self.max_norm = None
self.clip_norm = None
self.symmetric_norm = None
### setting up the parameters ###
def _build_mel_basis(
self,
) -> np.ndarray:
"""Build melspectrogram basis.
Returns:
np.ndarray: melspectrogram basis.
"""
if self.mel_fmax is not None:
assert self.mel_fmax <= self.sample_rate // 2
return librosa.filters.mel(
self.sample_rate, self.fft_size, n_mels=self.num_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
)
def _stft_parameters(
self,
) -> Tuple[int, int]:
"""Compute the real STFT parameters from the time values.
Returns:
Tuple[int, int]: hop length and window length for STFT.
"""
factor = self.frame_length_ms / self.frame_shift_ms
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
win_length = int(hop_length * factor)
return hop_length, win_length
### normalization ###
def normalize(self, S: np.ndarray) -> np.ndarray:
"""Normalize values into `[0, self.max_norm]` or `[-self.max_norm, self.max_norm]`
Args:
S (np.ndarray): Spectrogram to normalize.
Raises:
RuntimeError: Mean and variance is computed from incompatible parameters.
Returns:
np.ndarray: Normalized spectrogram.
"""
# pylint: disable=no-else-return
return S
# S = S.copy()
# if self.signal_norm:
# # mean-var scaling
# if hasattr(self, "mel_scaler"):
# if S.shape[0] == self.num_mels:
# return self.mel_scaler.transform(S.T).T
# elif S.shape[0] == self.fft_size / 2:
# return self.linear_scaler.transform(S.T).T
# else:
# raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
# # range normalization
# S -= self.ref_level_db # discard certain range of DB assuming it is air noise
# S_norm = (S - self.min_level_db) / (-self.min_level_db)
# if self.symmetric_norm:
# S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
# if self.clip_norm:
# S_norm = np.clip(
# S_norm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type
# )
# return S_norm
# else:
# S_norm = self.max_norm * S_norm
# if self.clip_norm:
# S_norm = np.clip(S_norm, 0, self.max_norm)
# return S_norm
# else:
# return S
def denormalize(self, S: np.ndarray) -> np.ndarray:
"""Denormalize spectrogram values.
Args:
S (np.ndarray): Spectrogram to denormalize.
Raises:
RuntimeError: Mean and variance are incompatible.
Returns:
np.ndarray: Denormalized spectrogram.
"""
# pylint: disable=no-else-return
S_denorm = S.copy()
if self.signal_norm:
# mean-var scaling
if hasattr(self, "mel_scaler"):
if S_denorm.shape[0] == self.num_mels:
return self.mel_scaler.inverse_transform(S_denorm.T).T
elif S_denorm.shape[0] == self.fft_size / 2:
return self.linear_scaler.inverse_transform(S_denorm.T).T
else:
raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
if self.symmetric_norm:
if self.clip_norm:
S_denorm = np.clip(
S_denorm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type
)
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
return S_denorm + self.ref_level_db
else:
if self.clip_norm:
S_denorm = np.clip(S_denorm, 0, self.max_norm)
S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db
return S_denorm + self.ref_level_db
else:
return S_denorm
### Mean-STD scaling ###
def load_stats(self, stats_path: str) -> Tuple[np.array, np.array, np.array, np.array, Dict]:
"""Loading mean and variance statistics from a `npy` file.
Args:
stats_path (str): Path to the `npy` file containing
Returns:
Tuple[np.array, np.array, np.array, np.array, Dict]: loaded statistics and the config used to
compute them.
"""
stats = np.load(stats_path, allow_pickle=True).item() # pylint: disable=unexpected-keyword-arg
mel_mean = stats["mel_mean"]
mel_std = stats["mel_std"]
linear_mean = stats["linear_mean"]
linear_std = stats["linear_std"]
stats_config = stats["audio_config"]
# check all audio parameters used for computing stats
skip_parameters = ["griffin_lim_iters", "stats_path", "do_trim_silence", "ref_level_db", "power"]
for key in stats_config.keys():
if key in skip_parameters:
continue
if key not in ["sample_rate", "trim_db"]:
assert (
stats_config[key] == self.__dict__[key]
), f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
return mel_mean, mel_std, linear_mean, linear_std, stats_config
# pylint: disable=attribute-defined-outside-init
def setup_scaler(
self, mel_mean: np.ndarray, mel_std: np.ndarray, linear_mean: np.ndarray, linear_std: np.ndarray
) -> None:
"""Initialize scaler objects used in mean-std normalization.
Args:
mel_mean (np.ndarray): Mean for melspectrograms.
mel_std (np.ndarray): STD for melspectrograms.
linear_mean (np.ndarray): Mean for full scale spectrograms.
linear_std (np.ndarray): STD for full scale spectrograms.
"""
self.mel_scaler = StandardScaler()
self.mel_scaler.set_stats(mel_mean, mel_std)
self.linear_scaler = StandardScaler()
self.linear_scaler.set_stats(linear_mean, linear_std)
### DB and AMP conversion ###
# pylint: disable=no-self-use
def _amp_to_db(self, x: np.ndarray) -> np.ndarray:
"""Convert amplitude values to decibels.
Args:
x (np.ndarray): Amplitude spectrogram.
Returns:
np.ndarray: Decibels spectrogram.
"""
return self.spec_gain * _log(np.maximum(1e-5, x), self.base)
# pylint: disable=no-self-use
def _db_to_amp(self, x: np.ndarray) -> np.ndarray:
"""Convert decibels spectrogram to amplitude spectrogram.
Args:
x (np.ndarray): Decibels spectrogram.
Returns:
np.ndarray: Amplitude spectrogram.
"""
return _exp(x / self.spec_gain, self.base)
### Preemphasis ###
def apply_preemphasis(self, x: np.ndarray) -> np.ndarray:
"""Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values.
Args:
x (np.ndarray): Audio signal.
Raises:
RuntimeError: Preemphasis coeff is set to 0.
Returns:
np.ndarray: Decorrelated audio signal.
"""
if self.preemphasis == 0:
raise RuntimeError(" [!] Preemphasis is set 0.0.")
return scipy.signal.lfilter([1, -self.preemphasis], [1], x)
def apply_inv_preemphasis(self, x: np.ndarray) -> np.ndarray:
"""Reverse pre-emphasis."""
if self.preemphasis == 0:
raise RuntimeError(" [!] Preemphasis is set 0.0.")
return scipy.signal.lfilter([1], [1, -self.preemphasis], x)
### SPECTROGRAMs ###
def _linear_to_mel(self, spectrogram: np.ndarray) -> np.ndarray:
"""Project a full scale spectrogram to a melspectrogram.
Args:
spectrogram (np.ndarray): Full scale spectrogram.
Returns:
np.ndarray: Melspectrogram
"""
return np.dot(self.mel_basis, spectrogram)
def _mel_to_linear(self, mel_spec: np.ndarray) -> np.ndarray:
"""Convert a melspectrogram to full scale spectrogram."""
return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))
def spectrogram(self, y: np.ndarray) -> np.ndarray:
"""Compute a spectrogram from a waveform.
Args:
y (np.ndarray): Waveform.
Returns:
np.ndarray: Spectrogram.
"""
# if self.preemphasis != 0:
# D = self._stft(self.apply_preemphasis(y))
# else:
# D = self._stft(y)
D = self._stft(y)
# if self.do_amp_to_db_linear:
# S = self._amp_to_db(np.abs(D))
# else:
# S = np.abs(D)
S = np.abs(D)
return self.normalize(S).astype(np.float32)
def melspectrogram(self, y: np.ndarray) -> np.ndarray:
"""Compute a melspectrogram from a waveform."""
# if self.preemphasis != 0:
# D = self._stft(self.apply_preemphasis(y))
# else:
# D = self._stft(y)
D = self._stft(y)
# if self.do_amp_to_db_mel:
# S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
# else:
# S = self._linear_to_mel(np.abs(D))
S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
return self.normalize(S).astype(np.float32)
def inv_spectrogram(self, spectrogram: np.ndarray) -> np.ndarray:
"""Convert a spectrogram to a waveform using Griffi-Lim vocoder."""
S = self.denormalize(spectrogram)
S = self._db_to_amp(S)
# Reconstruct phase
if self.preemphasis != 0:
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
return self._griffin_lim(S ** self.power)
def inv_melspectrogram(self, mel_spectrogram: np.ndarray) -> np.ndarray:
"""Convert a melspectrogram to a waveform using Griffi-Lim vocoder."""
D = self.denormalize(mel_spectrogram)
S = self._db_to_amp(D)
S = self._mel_to_linear(S) # Convert back to linear
if self.preemphasis != 0:
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
return self._griffin_lim(S ** self.power)
def out_linear_to_mel(self, linear_spec: np.ndarray) -> np.ndarray:
"""Convert a full scale linear spectrogram output of a network to a melspectrogram.
Args:
linear_spec (np.ndarray): Normalized full scale linear spectrogram.
Returns:
np.ndarray: Normalized melspectrogram.
"""
S = self.denormalize(linear_spec)
S = self._db_to_amp(S)
S = self._linear_to_mel(np.abs(S))
S = self._amp_to_db(S)
mel = self.normalize(S)
return mel
### STFT and ISTFT ###
def _stft(self, y: np.ndarray) -> np.ndarray:
"""Librosa STFT wrapper.
Args:
y (np.ndarray): Audio signal.
Returns:
np.ndarray: Complex number array.
"""
return librosa.stft(
y=y,
n_fft=self.fft_size,
hop_length=self.hop_length,
win_length=self.win_length,
pad_mode=self.stft_pad_mode,
window="hann",
center=True,
)
def _istft(self, y: np.ndarray) -> np.ndarray:
"""Librosa iSTFT wrapper."""
return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length)
def _griffin_lim(self, S):
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = self._istft(S_complex * angles)
if not np.isfinite(y).all():
print(" [!] Waveform is not finite everywhere. Skipping the GL.")
return np.array([0.0])
for _ in range(self.griffin_lim_iters):
angles = np.exp(1j * np.angle(self._stft(y)))
y = self._istft(S_complex * angles)
return y
def compute_stft_paddings(self, x, pad_sides=1):
"""Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding
(first and final frames)"""
assert pad_sides in (1, 2)
pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
if pad_sides == 1:
return 0, pad
return pad // 2, pad // 2 + pad % 2
def compute_f0(self, x: np.ndarray) -> np.ndarray:
import pyworld as pw
"""Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram.
Args:
x (np.ndarray): Waveform.
Returns:
np.ndarray: Pitch.
Examples:
>>> WAV_FILE = filename = librosa.util.example_audio_file()
>>> from TTS.config import BaseAudioConfig
>>> from TTS.utils.audio import AudioProcessor
>>> conf = BaseAudioConfig(mel_fmax=8000)
>>> ap = AudioProcessor(**conf)
>>> wav = ap.load_wav(WAV_FILE, sr=22050)[:5 * 22050]
>>> pitch = ap.compute_f0(wav)
"""
# align F0 length to the spectrogram length
# if len(x) % self.hop_length == 0:
# x = np.pad(x, (0, self.hop_length // 2), mode="reflect")
# f0, t = pw.dio(
# x.astype(np.double),
# fs=self.sample_rate,
# f0_ceil=self.mel_fmax,
# frame_period=1000 * self.hop_length / self.sample_rate,
# )
# f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
# return f0
pass
### Audio Processing ###
def find_endpoint(self, wav: np.ndarray, min_silence_sec=0.8) -> int:
"""Find the last point without silence at the end of a audio signal.
Args:
wav (np.ndarray): Audio signal.
threshold_db (int, optional): Silence threshold in decibels. Defaults to -40.
min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8.
Returns:
int: Last point without silence.
"""
window_length = int(self.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = self._db_to_amp(-self.trim_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x : x + window_length]) < threshold:
return x + hop_length
return len(wav)
def trim_silence(self, wav):
"""Trim silent parts with a threshold and 0.01 sec margin"""
margin = int(self.sample_rate * 0.01)
wav = wav[margin:-margin]
return librosa.effects.trim(wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[
0
]
@staticmethod
def sound_norm(x: np.ndarray) -> np.ndarray:
"""Normalize the volume of an audio signal.
Args:
x (np.ndarray): Raw waveform.
Returns:
np.ndarray: Volume normalized waveform.
"""
return x / abs(x).max() * 0.95
@staticmethod
def _rms_norm(wav, db_level=-27):
r = 10 ** (db_level / 20)
a = np.sqrt((len(wav) * (r ** 2)) / np.sum(wav ** 2))
return wav * a
def rms_volume_norm(self, x: np.ndarray, db_level: float = None) -> np.ndarray:
"""Normalize the volume based on RMS of the signal.
Args:
x (np.ndarray): Raw waveform.
Returns:
np.ndarray: RMS normalized waveform.
"""
if db_level is None:
db_level = self.db_level
assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0"
wav = self._rms_norm(x, db_level)
return wav
### save and load ###
def load_wav(self, filename: str, sr: int = None) -> np.ndarray:
"""Read a wav file using Librosa and optionally resample, silence trim, volume normalize.
Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before.
Args:
filename (str): Path to the wav file.
sr (int, optional): Sampling rate for resampling. Defaults to None.
Returns:
np.ndarray: Loaded waveform.
"""
if self.resample:
# loading with resampling. It is significantly slower.
x, sr = librosa.load(filename, sr=self.sample_rate)
elif sr is None:
# SF is faster than librosa for loading files
x, sr = sf.read(filename)
assert self.sample_rate == sr, "%s vs %s (%s)" % (self.sample_rate, sr, filename)
else:
x, sr = librosa.load(filename, sr=sr)
if self.do_trim_silence:
try:
x = self.trim_silence(x)
except ValueError as e:
print(f" [!] File cannot be trimmed for silence - {filename}:", e)
return None#"==DEL_BAD_FILE=="
if self.do_sound_norm:
x = self.sound_norm(x)
if self.do_rms_norm:
x = self.rms_volume_norm(x, self.db_level)
return x
def save_wav(self, wav: np.ndarray, path: str, sr: int = None) -> None:
"""Save a waveform to a file using Scipy.
Args:
wav (np.ndarray): Waveform to save.
path (str): Path to a output file.
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
"""
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm.astype(np.int16))
def get_duration(self, filename: str) -> float:
"""Get the duration of a wav file using Librosa.
Args:
filename (str): Path to the wav file.
"""
return librosa.get_duration(filename)
@staticmethod
def mulaw_encode(wav: np.ndarray, qc: int) -> np.ndarray:
mu = 2 ** qc - 1
# wav_abs = np.minimum(np.abs(wav), 1.0)
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu)
# Quantize signal to the specified number of levels.
signal = (signal + 1) / 2 * mu + 0.5
return np.floor(
signal,
)
@staticmethod
def mulaw_decode(wav, qc):
"""Recovers waveform from quantized values."""
mu = 2 ** qc - 1
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
return x
@staticmethod
def encode_16bits(x):
return np.clip(x * 2 ** 15, -(2 ** 15), 2 ** 15 - 1).astype(np.int16)
@staticmethod
def quantize(x: np.ndarray, bits: int) -> np.ndarray:
"""Quantize a waveform to a given number of bits.
Args:
x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`.
bits (int): Number of quantization bits.
Returns:
np.ndarray: Quantized waveform.
"""
return (x + 1.0) * (2 ** bits - 1) / 2
@staticmethod
def dequantize(x, bits):
"""Dequantize a waveform from the given number of bits."""
return 2 * x / (2 ** bits - 1) - 1
def _log(x, base):
if base == 10:
return np.log10(x)
return np.log(x)
def _exp(x, base):
if base == 10:
return np.power(10, x)
return np.exp(x)
|