File size: 33,807 Bytes
19c8b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
from typing import Dict, Tuple

import librosa
import numpy as np
import scipy.io.wavfile
import scipy.signal
import soundfile as sf
import torch
from torch import nn

# from TTS.tts.utils.helpers import StandardScaler
class StandardScaler:
    """StandardScaler for mean-scale normalization with the given mean and scale values."""

    def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None:
        self.mean_ = mean
        self.scale_ = scale

    def set_stats(self, mean, scale):
        self.mean_ = mean
        self.scale_ = scale

    def reset_stats(self):
        delattr(self, "mean_")
        delattr(self, "scale_")

    def transform(self, X):
        X = np.asarray(X)
        X -= self.mean_
        X /= self.scale_
        return X

    def inverse_transform(self, X):
        X = np.asarray(X)
        X *= self.scale_
        X += self.mean_
        return X


class TorchSTFT(nn.Module):  # pylint: disable=abstract-method
    """Some of the audio processing funtions using Torch for faster batch processing.

    TODO: Merge this with audio.py

    Args:

        n_fft (int):
            FFT window size for STFT.

        hop_length (int):
            number of frames between STFT columns.

        win_length (int, optional):
            STFT window length.

        pad_wav (bool, optional):
            If True pad the audio with (n_fft - hop_length) / 2). Defaults to False.

        window (str, optional):
            The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window"

        sample_rate (int, optional):
            target audio sampling rate. Defaults to None.

        mel_fmin (int, optional):
            minimum filter frequency for computing melspectrograms. Defaults to None.

        mel_fmax (int, optional):
            maximum filter frequency for computing melspectrograms. Defaults to None.

        n_mels (int, optional):
            number of melspectrogram dimensions. Defaults to None.

        use_mel (bool, optional):
            If True compute the melspectrograms otherwise. Defaults to False.

        do_amp_to_db_linear (bool, optional):
            enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False.

        spec_gain (float, optional):
            gain applied when converting amplitude to DB. Defaults to 1.0.

        power (float, optional):
            Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc.  Defaults to None.

        use_htk (bool, optional):
            Use HTK formula in mel filter instead of Slaney.

        mel_norm (None, 'slaney', or number, optional):
            If 'slaney', divide the triangular mel weights by the width of the mel band
            (area normalization).

            If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm.
            See `librosa.util.normalize` for a full description of supported norm values
            (including `+-np.inf`).

            Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney".
    """

    def __init__(
        self,
        n_fft,
        hop_length,
        win_length,
        pad_wav=False,
        window="hann_window",
        sample_rate=None,
        mel_fmin=0,
        mel_fmax=None,
        n_mels=80,
        use_mel=False,
        do_amp_to_db=False,
        spec_gain=1.0,
        power=None,
        use_htk=False,
        mel_norm="slaney",
    ):
        super().__init__()
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.pad_wav = pad_wav
        self.sample_rate = sample_rate
        self.mel_fmin = mel_fmin
        self.mel_fmax = mel_fmax
        self.n_mels = n_mels
        self.use_mel = use_mel
        self.do_amp_to_db = do_amp_to_db
        self.spec_gain = spec_gain
        self.power = power
        self.use_htk = use_htk
        self.mel_norm = mel_norm
        self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
        self.mel_basis = None
        if use_mel:
            self._build_mel_basis()

    def __call__(self, x):
        """Compute spectrogram frames by torch based stft.

        Args:
            x (Tensor): input waveform

        Returns:
            Tensor: spectrogram frames.

        Shapes:
            x: [B x T] or [:math:`[B, 1, T]`]
        """
        if x.ndim == 2:
            x = x.unsqueeze(1)
        if self.pad_wav:
            padding = int((self.n_fft - self.hop_length) / 2)
            x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
        # B x D x T x 2
        x_device = x.device
        o = torch.stft(
            x.squeeze(1).to(self.window.device),
            self.n_fft,
            self.hop_length,
            self.win_length,
            self.window,
            center=True,
            pad_mode="reflect",  # compatible with audio.py
            normalized=False,
            onesided=True,
            return_complex=False,
        )
        M = o[:, :, :, 0]
        P = o[:, :, :, 1]
        S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))

        if self.power is not None:
            S = S ** self.power

        if self.use_mel:
            S = torch.matmul(self.mel_basis.to(self.window.device), S)
            # S = torch.matmul(self.mel_basis, S)
        if self.do_amp_to_db:
            S = self._amp_to_db(S, spec_gain=self.spec_gain)
        return S.to(x_device)

    def _build_mel_basis(self):
        mel_basis = librosa.filters.mel(
            self.sample_rate,
            self.n_fft,
            n_mels=self.n_mels,
            fmin=self.mel_fmin,
            fmax=self.mel_fmax,
            htk=self.use_htk,
            norm=self.mel_norm,
        )
        self.mel_basis = torch.from_numpy(mel_basis).float()

    @staticmethod
    def _amp_to_db(x, spec_gain=1.0):
        return torch.log(torch.clamp(x, min=1e-5) * spec_gain)

    @staticmethod
    def _db_to_amp(x, spec_gain=1.0):
        return torch.exp(x) / spec_gain


# pylint: disable=too-many-public-methods
class AudioProcessor(object):
    """Audio Processor for TTS used by all the data pipelines.

    TODO: Make this a dataclass to replace `BaseAudioConfig`.

    Note:
        All the class arguments are set to default values to enable a flexible initialization
        of the class with the model config. They are not meaningful for all the arguments.

    Args:
        sample_rate (int, optional):
            target audio sampling rate. Defaults to None.

        resample (bool, optional):
            enable/disable resampling of the audio clips when the target sampling rate does not match the original sampling rate. Defaults to False.

        num_mels (int, optional):
            number of melspectrogram dimensions. Defaults to None.

        log_func (int, optional):
            log exponent used for converting spectrogram aplitude to DB.

        min_level_db (int, optional):
            minimum db threshold for the computed melspectrograms. Defaults to None.

        frame_shift_ms (int, optional):
            milliseconds of frames between STFT columns. Defaults to None.

        frame_length_ms (int, optional):
            milliseconds of STFT window length. Defaults to None.

        hop_length (int, optional):
            number of frames between STFT columns. Used if ```frame_shift_ms``` is None. Defaults to None.

        win_length (int, optional):
            STFT window length. Used if ```frame_length_ms``` is None. Defaults to None.

        ref_level_db (int, optional):
            reference DB level to avoid background noise. In general <20DB corresponds to the air noise. Defaults to None.

        fft_size (int, optional):
            FFT window size for STFT. Defaults to 1024.

        power (int, optional):
            Exponent value applied to the spectrogram before GriffinLim. Defaults to None.

        preemphasis (float, optional):
            Preemphasis coefficient. Preemphasis is disabled if == 0.0. Defaults to 0.0.

        signal_norm (bool, optional):
            enable/disable signal normalization. Defaults to None.

        symmetric_norm (bool, optional):
            enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else [0, k], Defaults to None.

        max_norm (float, optional):
            ```k``` defining the normalization range. Defaults to None.

        mel_fmin (int, optional):
            minimum filter frequency for computing melspectrograms. Defaults to None.

        mel_fmax (int, optional):
            maximum filter frequency for computing melspectrograms. Defaults to None.

        spec_gain (int, optional):
            gain applied when converting amplitude to DB. Defaults to 20.

        stft_pad_mode (str, optional):
            Padding mode for STFT. Defaults to 'reflect'.

        clip_norm (bool, optional):
            enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.

        griffin_lim_iters (int, optional):
            Number of GriffinLim iterations. Defaults to None.

        do_trim_silence (bool, optional):
            enable/disable silence trimming when loading the audio signal. Defaults to False.

        trim_db (int, optional):
            DB threshold used for silence trimming. Defaults to 60.

        do_sound_norm (bool, optional):
            enable/disable signal normalization. Defaults to False.

        do_amp_to_db_linear (bool, optional):
            enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.

        do_amp_to_db_mel (bool, optional):
            enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.

        do_rms_norm (bool, optional):
            enable/disable RMS volume normalization when loading an audio file. Defaults to False.

        db_level (int, optional):
            dB level used for rms normalization. The range is -99 to 0. Defaults to None.

        stats_path (str, optional):
            Path to the computed stats file. Defaults to None.

        verbose (bool, optional):
            enable/disable logging. Defaults to True.

    """

    def __init__(
        self,
        # sample_rate=None,
        sample_rate=22050,
        resample=False,
        num_mels=None,
        log_func="np.log10",
        min_level_db=None,
        frame_shift_ms=None,
        frame_length_ms=None,
        # hop_length=None,
        hop_length=256,
        # win_length=None,
        win_length=1024,
        ref_level_db=None,
        fft_size=1024,
        power=None,
        preemphasis=0.0,
        signal_norm=None,
        symmetric_norm=None,
        max_norm=None,
        mel_fmin=None,
        mel_fmax=None,
        spec_gain=20,
        stft_pad_mode="reflect",
        clip_norm=True,
        griffin_lim_iters=None,
        do_trim_silence=False,
        trim_db=60,
        do_sound_norm=False,
        do_amp_to_db_linear=True,
        do_amp_to_db_mel=True,
        do_rms_norm=False,
        db_level=None,
        stats_path=None,
        verbose=True,
        **_,
    ):

        # setup class attributed
        self.sample_rate = sample_rate
        self.resample = resample
        self.num_mels = num_mels
        self.log_func = log_func
        self.min_level_db = min_level_db or 0
        self.frame_shift_ms = frame_shift_ms
        self.frame_length_ms = frame_length_ms
        self.ref_level_db = ref_level_db
        self.fft_size = fft_size
        self.power = power
        self.preemphasis = preemphasis
        self.griffin_lim_iters = griffin_lim_iters
        self.signal_norm = signal_norm
        self.symmetric_norm = symmetric_norm
        self.mel_fmin = mel_fmin or 0
        self.mel_fmax = mel_fmax
        self.spec_gain = float(spec_gain)
        self.stft_pad_mode = stft_pad_mode
        self.max_norm = 1.0 if max_norm is None else float(max_norm)
        self.clip_norm = clip_norm
        self.do_trim_silence = do_trim_silence
        self.trim_db = trim_db
        self.do_sound_norm = do_sound_norm
        self.do_amp_to_db_linear = do_amp_to_db_linear
        self.do_amp_to_db_mel = do_amp_to_db_mel
        self.do_rms_norm = do_rms_norm
        self.db_level = db_level
        self.stats_path = stats_path
        # setup exp_func for db to amp conversion
        if log_func == "np.log":
            self.base = np.e
        elif log_func == "np.log10":
            self.base = 10
        else:
            raise ValueError(" [!] unknown `log_func` value.")
        # setup stft parameters
        if hop_length is None:
            # compute stft parameters from given time values
            self.hop_length, self.win_length = self._stft_parameters()
        else:
            # use stft parameters from config file
            self.hop_length = hop_length
            self.win_length = win_length
        assert min_level_db != 0.0, " [!] min_level_db is 0"
        assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size"
        # members = vars(self)
        # if verbose:
        # print(" > Setting up Audio Processor...")
        # for key, value in members.items():
            # print(" | > {}:{}".format(key, value))
        # create spectrogram utils
        self.mel_basis = self._build_mel_basis()
        self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
        # setup scaler
        if stats_path and signal_norm:
            mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
            self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
            self.signal_norm = True
            self.max_norm = None
            self.clip_norm = None
            self.symmetric_norm = None

    ### setting up the parameters ###
    def _build_mel_basis(
        self,
    ) -> np.ndarray:
        """Build melspectrogram basis.

        Returns:
            np.ndarray: melspectrogram basis.
        """
        if self.mel_fmax is not None:
            assert self.mel_fmax <= self.sample_rate // 2
        return librosa.filters.mel(
            self.sample_rate, self.fft_size, n_mels=self.num_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
        )

    def _stft_parameters(
        self,
    ) -> Tuple[int, int]:
        """Compute the real STFT parameters from the time values.

        Returns:
            Tuple[int, int]: hop length and window length for STFT.
        """
        factor = self.frame_length_ms / self.frame_shift_ms
        assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
        hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
        win_length = int(hop_length * factor)
        return hop_length, win_length

    ### normalization ###
    def normalize(self, S: np.ndarray) -> np.ndarray:
        """Normalize values into `[0, self.max_norm]` or `[-self.max_norm, self.max_norm]`

        Args:
            S (np.ndarray): Spectrogram to normalize.

        Raises:
            RuntimeError: Mean and variance is computed from incompatible parameters.

        Returns:
            np.ndarray: Normalized spectrogram.
        """
        # pylint: disable=no-else-return
        return S

        # S = S.copy()
        # if self.signal_norm:
        #     # mean-var scaling
        #     if hasattr(self, "mel_scaler"):
        #         if S.shape[0] == self.num_mels:
        #             return self.mel_scaler.transform(S.T).T
        #         elif S.shape[0] == self.fft_size / 2:
        #             return self.linear_scaler.transform(S.T).T
        #         else:
        #             raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
        #     # range normalization
        #     S -= self.ref_level_db  # discard certain range of DB assuming it is air noise
        #     S_norm = (S - self.min_level_db) / (-self.min_level_db)
        #     if self.symmetric_norm:
        #         S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
        #         if self.clip_norm:
        #             S_norm = np.clip(
        #                 S_norm, -self.max_norm, self.max_norm  # pylint: disable=invalid-unary-operand-type
        #             )
        #         return S_norm
        #     else:
        #         S_norm = self.max_norm * S_norm
        #         if self.clip_norm:
        #             S_norm = np.clip(S_norm, 0, self.max_norm)
        #         return S_norm
        # else:
        #     return S

    def denormalize(self, S: np.ndarray) -> np.ndarray:
        """Denormalize spectrogram values.

        Args:
            S (np.ndarray): Spectrogram to denormalize.

        Raises:
            RuntimeError: Mean and variance are incompatible.

        Returns:
            np.ndarray: Denormalized spectrogram.
        """
        # pylint: disable=no-else-return
        S_denorm = S.copy()
        if self.signal_norm:
            # mean-var scaling
            if hasattr(self, "mel_scaler"):
                if S_denorm.shape[0] == self.num_mels:
                    return self.mel_scaler.inverse_transform(S_denorm.T).T
                elif S_denorm.shape[0] == self.fft_size / 2:
                    return self.linear_scaler.inverse_transform(S_denorm.T).T
                else:
                    raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
            if self.symmetric_norm:
                if self.clip_norm:
                    S_denorm = np.clip(
                        S_denorm, -self.max_norm, self.max_norm  # pylint: disable=invalid-unary-operand-type
                    )
                S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
                return S_denorm + self.ref_level_db
            else:
                if self.clip_norm:
                    S_denorm = np.clip(S_denorm, 0, self.max_norm)
                S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db
                return S_denorm + self.ref_level_db
        else:
            return S_denorm

    ### Mean-STD scaling ###
    def load_stats(self, stats_path: str) -> Tuple[np.array, np.array, np.array, np.array, Dict]:
        """Loading mean and variance statistics from a `npy` file.

        Args:
            stats_path (str): Path to the `npy` file containing

        Returns:
            Tuple[np.array, np.array, np.array, np.array, Dict]: loaded statistics and the config used to
                compute them.
        """
        stats = np.load(stats_path, allow_pickle=True).item()  # pylint: disable=unexpected-keyword-arg
        mel_mean = stats["mel_mean"]
        mel_std = stats["mel_std"]
        linear_mean = stats["linear_mean"]
        linear_std = stats["linear_std"]
        stats_config = stats["audio_config"]
        # check all audio parameters used for computing stats
        skip_parameters = ["griffin_lim_iters", "stats_path", "do_trim_silence", "ref_level_db", "power"]
        for key in stats_config.keys():
            if key in skip_parameters:
                continue
            if key not in ["sample_rate", "trim_db"]:
                assert (
                    stats_config[key] == self.__dict__[key]
                ), f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
        return mel_mean, mel_std, linear_mean, linear_std, stats_config

    # pylint: disable=attribute-defined-outside-init
    def setup_scaler(
        self, mel_mean: np.ndarray, mel_std: np.ndarray, linear_mean: np.ndarray, linear_std: np.ndarray
    ) -> None:
        """Initialize scaler objects used in mean-std normalization.

        Args:
            mel_mean (np.ndarray): Mean for melspectrograms.
            mel_std (np.ndarray): STD for melspectrograms.
            linear_mean (np.ndarray): Mean for full scale spectrograms.
            linear_std (np.ndarray): STD for full scale spectrograms.
        """
        self.mel_scaler = StandardScaler()
        self.mel_scaler.set_stats(mel_mean, mel_std)
        self.linear_scaler = StandardScaler()
        self.linear_scaler.set_stats(linear_mean, linear_std)

    ### DB and AMP conversion ###
    # pylint: disable=no-self-use
    def _amp_to_db(self, x: np.ndarray) -> np.ndarray:
        """Convert amplitude values to decibels.

        Args:
            x (np.ndarray): Amplitude spectrogram.

        Returns:
            np.ndarray: Decibels spectrogram.
        """
        return self.spec_gain * _log(np.maximum(1e-5, x), self.base)

    # pylint: disable=no-self-use
    def _db_to_amp(self, x: np.ndarray) -> np.ndarray:
        """Convert decibels spectrogram to amplitude spectrogram.

        Args:
            x (np.ndarray): Decibels spectrogram.

        Returns:
            np.ndarray: Amplitude spectrogram.
        """
        return _exp(x / self.spec_gain, self.base)

    ### Preemphasis ###
    def apply_preemphasis(self, x: np.ndarray) -> np.ndarray:
        """Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values.

        Args:
            x (np.ndarray): Audio signal.

        Raises:
            RuntimeError: Preemphasis coeff is set to 0.

        Returns:
            np.ndarray: Decorrelated audio signal.
        """
        if self.preemphasis == 0:
            raise RuntimeError(" [!] Preemphasis is set 0.0.")
        return scipy.signal.lfilter([1, -self.preemphasis], [1], x)

    def apply_inv_preemphasis(self, x: np.ndarray) -> np.ndarray:
        """Reverse pre-emphasis."""
        if self.preemphasis == 0:
            raise RuntimeError(" [!] Preemphasis is set 0.0.")
        return scipy.signal.lfilter([1], [1, -self.preemphasis], x)

    ### SPECTROGRAMs ###
    def _linear_to_mel(self, spectrogram: np.ndarray) -> np.ndarray:
        """Project a full scale spectrogram to a melspectrogram.

        Args:
            spectrogram (np.ndarray): Full scale spectrogram.

        Returns:
            np.ndarray: Melspectrogram
        """
        return np.dot(self.mel_basis, spectrogram)

    def _mel_to_linear(self, mel_spec: np.ndarray) -> np.ndarray:
        """Convert a melspectrogram to full scale spectrogram."""
        return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))

    def spectrogram(self, y: np.ndarray) -> np.ndarray:
        """Compute a spectrogram from a waveform.

        Args:
            y (np.ndarray): Waveform.

        Returns:
            np.ndarray: Spectrogram.
        """
        # if self.preemphasis != 0:
        #     D = self._stft(self.apply_preemphasis(y))
        # else:
        #     D = self._stft(y)
        D = self._stft(y)
        # if self.do_amp_to_db_linear:
        #     S = self._amp_to_db(np.abs(D))
        # else:
        #     S = np.abs(D)
        S = np.abs(D)
        return self.normalize(S).astype(np.float32)

    def melspectrogram(self, y: np.ndarray) -> np.ndarray:
        """Compute a melspectrogram from a waveform."""
        # if self.preemphasis != 0:
        #     D = self._stft(self.apply_preemphasis(y))
        # else:
        #     D = self._stft(y)
        D = self._stft(y)
        # if self.do_amp_to_db_mel:
        #     S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
        # else:
        #     S = self._linear_to_mel(np.abs(D))
        S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
        return self.normalize(S).astype(np.float32)

    def inv_spectrogram(self, spectrogram: np.ndarray) -> np.ndarray:
        """Convert a spectrogram to a waveform using Griffi-Lim vocoder."""
        S = self.denormalize(spectrogram)
        S = self._db_to_amp(S)
        # Reconstruct phase
        if self.preemphasis != 0:
            return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
        return self._griffin_lim(S ** self.power)

    def inv_melspectrogram(self, mel_spectrogram: np.ndarray) -> np.ndarray:
        """Convert a melspectrogram to a waveform using Griffi-Lim vocoder."""
        D = self.denormalize(mel_spectrogram)
        S = self._db_to_amp(D)
        S = self._mel_to_linear(S)  # Convert back to linear
        if self.preemphasis != 0:
            return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
        return self._griffin_lim(S ** self.power)

    def out_linear_to_mel(self, linear_spec: np.ndarray) -> np.ndarray:
        """Convert a full scale linear spectrogram output of a network to a melspectrogram.

        Args:
            linear_spec (np.ndarray): Normalized full scale linear spectrogram.

        Returns:
            np.ndarray: Normalized melspectrogram.
        """
        S = self.denormalize(linear_spec)
        S = self._db_to_amp(S)
        S = self._linear_to_mel(np.abs(S))
        S = self._amp_to_db(S)
        mel = self.normalize(S)
        return mel

    ### STFT and ISTFT ###
    def _stft(self, y: np.ndarray) -> np.ndarray:
        """Librosa STFT wrapper.

        Args:
            y (np.ndarray): Audio signal.

        Returns:
            np.ndarray: Complex number array.
        """
        return librosa.stft(
            y=y,
            n_fft=self.fft_size,
            hop_length=self.hop_length,
            win_length=self.win_length,
            pad_mode=self.stft_pad_mode,
            window="hann",
            center=True,
        )

    def _istft(self, y: np.ndarray) -> np.ndarray:
        """Librosa iSTFT wrapper."""
        return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length)

    def _griffin_lim(self, S):
        angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
        S_complex = np.abs(S).astype(np.complex)
        y = self._istft(S_complex * angles)
        if not np.isfinite(y).all():
            print(" [!] Waveform is not finite everywhere. Skipping the GL.")
            return np.array([0.0])
        for _ in range(self.griffin_lim_iters):
            angles = np.exp(1j * np.angle(self._stft(y)))
            y = self._istft(S_complex * angles)
        return y

    def compute_stft_paddings(self, x, pad_sides=1):
        """Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding
        (first and final frames)"""
        assert pad_sides in (1, 2)
        pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
        if pad_sides == 1:
            return 0, pad
        return pad // 2, pad // 2 + pad % 2

    def compute_f0(self, x: np.ndarray) -> np.ndarray:
        import pyworld as pw
        """Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram.

        Args:
            x (np.ndarray): Waveform.

        Returns:
            np.ndarray: Pitch.

        Examples:
            >>> WAV_FILE = filename = librosa.util.example_audio_file()
            >>> from TTS.config import BaseAudioConfig
            >>> from TTS.utils.audio import AudioProcessor
            >>> conf = BaseAudioConfig(mel_fmax=8000)
            >>> ap = AudioProcessor(**conf)
            >>> wav = ap.load_wav(WAV_FILE, sr=22050)[:5 * 22050]
            >>> pitch = ap.compute_f0(wav)
        """
        # align F0 length to the spectrogram length
        # if len(x) % self.hop_length == 0:
        #     x = np.pad(x, (0, self.hop_length // 2), mode="reflect")

        # f0, t = pw.dio(
        #     x.astype(np.double),
        #     fs=self.sample_rate,
        #     f0_ceil=self.mel_fmax,
        #     frame_period=1000 * self.hop_length / self.sample_rate,
        # )
        # f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
        # return f0
        pass

    ### Audio Processing ###
    def find_endpoint(self, wav: np.ndarray, min_silence_sec=0.8) -> int:
        """Find the last point without silence at the end of a audio signal.

        Args:
            wav (np.ndarray): Audio signal.
            threshold_db (int, optional): Silence threshold in decibels. Defaults to -40.
            min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8.

        Returns:
            int: Last point without silence.
        """
        window_length = int(self.sample_rate * min_silence_sec)
        hop_length = int(window_length / 4)
        threshold = self._db_to_amp(-self.trim_db)
        for x in range(hop_length, len(wav) - window_length, hop_length):
            if np.max(wav[x : x + window_length]) < threshold:
                return x + hop_length
        return len(wav)

    def trim_silence(self, wav):
        """Trim silent parts with a threshold and 0.01 sec margin"""
        margin = int(self.sample_rate * 0.01)
        wav = wav[margin:-margin]
        return librosa.effects.trim(wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[
            0
        ]

    @staticmethod
    def sound_norm(x: np.ndarray) -> np.ndarray:
        """Normalize the volume of an audio signal.

        Args:
            x (np.ndarray): Raw waveform.

        Returns:
            np.ndarray: Volume normalized waveform.
        """
        return x / abs(x).max() * 0.95

    @staticmethod
    def _rms_norm(wav, db_level=-27):
        r = 10 ** (db_level / 20)
        a = np.sqrt((len(wav) * (r ** 2)) / np.sum(wav ** 2))
        return wav * a

    def rms_volume_norm(self, x: np.ndarray, db_level: float = None) -> np.ndarray:
        """Normalize the volume based on RMS of the signal.

        Args:
            x (np.ndarray): Raw waveform.

        Returns:
            np.ndarray: RMS normalized waveform.
        """
        if db_level is None:
            db_level = self.db_level
        assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0"
        wav = self._rms_norm(x, db_level)
        return wav

    ### save and load ###
    def load_wav(self, filename: str, sr: int = None) -> np.ndarray:
        """Read a wav file using Librosa and optionally resample, silence trim, volume normalize.

        Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before.

        Args:
            filename (str): Path to the wav file.
            sr (int, optional): Sampling rate for resampling. Defaults to None.

        Returns:
            np.ndarray: Loaded waveform.
        """
        if self.resample:
            # loading with resampling. It is significantly slower.
            x, sr = librosa.load(filename, sr=self.sample_rate)
        elif sr is None:
            # SF is faster than librosa for loading files
            x, sr = sf.read(filename)
            assert self.sample_rate == sr, "%s vs %s (%s)" % (self.sample_rate, sr, filename)
        else:
            x, sr = librosa.load(filename, sr=sr)
        if self.do_trim_silence:
            try:
                x = self.trim_silence(x)
            except ValueError as e:
                print(f" [!] File cannot be trimmed for silence - {filename}:", e)
                return None#"==DEL_BAD_FILE=="
        if self.do_sound_norm:
            x = self.sound_norm(x)
        if self.do_rms_norm:
            x = self.rms_volume_norm(x, self.db_level)
        return x

    def save_wav(self, wav: np.ndarray, path: str, sr: int = None) -> None:
        """Save a waveform to a file using Scipy.

        Args:
            wav (np.ndarray): Waveform to save.
            path (str): Path to a output file.
            sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
        """
        wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
        scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm.astype(np.int16))

    def get_duration(self, filename: str) -> float:
        """Get the duration of a wav file using Librosa.

        Args:
            filename (str): Path to the wav file.
        """
        return librosa.get_duration(filename)

    @staticmethod
    def mulaw_encode(wav: np.ndarray, qc: int) -> np.ndarray:
        mu = 2 ** qc - 1
        # wav_abs = np.minimum(np.abs(wav), 1.0)
        signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu)
        # Quantize signal to the specified number of levels.
        signal = (signal + 1) / 2 * mu + 0.5
        return np.floor(
            signal,
        )

    @staticmethod
    def mulaw_decode(wav, qc):
        """Recovers waveform from quantized values."""
        mu = 2 ** qc - 1
        x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
        return x

    @staticmethod
    def encode_16bits(x):
        return np.clip(x * 2 ** 15, -(2 ** 15), 2 ** 15 - 1).astype(np.int16)

    @staticmethod
    def quantize(x: np.ndarray, bits: int) -> np.ndarray:
        """Quantize a waveform to a given number of bits.

        Args:
            x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`.
            bits (int): Number of quantization bits.

        Returns:
            np.ndarray: Quantized waveform.
        """
        return (x + 1.0) * (2 ** bits - 1) / 2

    @staticmethod
    def dequantize(x, bits):
        """Dequantize a waveform from the given number of bits."""
        return 2 * x / (2 ** bits - 1) - 1


def _log(x, base):
    if base == 10:
        return np.log10(x)
    return np.log(x)


def _exp(x, base):
    if base == 10:
        return np.power(10, x)
    return np.exp(x)