File size: 19,265 Bytes
19c8b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import math

import torch
from torch import nn
from torch.nn import functional as F

# from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2
class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-4):
        """Layer norm for the 2nd dimension of the input.
        Args:
            channels (int): number of channels (2nd dimension) of the input.
            eps (float): to prevent 0 division

        Shapes:
            - input: (B, C, T)
            - output: (B, C, T)
        """
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1)
        self.beta = nn.Parameter(torch.zeros(1, channels, 1))

    def forward(self, x):
        mean = torch.mean(x, 1, keepdim=True)
        variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
        x = (x - mean) * torch.rsqrt(variance + self.eps)
        x = x * self.gamma + self.beta
        return x


class LayerNorm2(nn.Module):
    """Layer norm for the 2nd dimension of the input using torch primitive.
    Args:
        channels (int): number of channels (2nd dimension) of the input.
        eps (float): to prevent 0 division

    Shapes:
        - input: (B, C, T)
        - output: (B, C, T)
    """

    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = torch.nn.functional.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)


class RelativePositionMultiHeadAttention(nn.Module):
    """Multi-head attention with Relative Positional embedding.
    https://arxiv.org/pdf/1809.04281.pdf

    It learns positional embeddings for a window of neighbours. For keys and values,
    it learns different set of embeddings. Key embeddings are agregated with the attention
    scores and value embeddings are aggregated with the output.

    Note:
        Example with relative attention window size 2

        - input = [a, b, c, d, e]
        - rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)]

        So it learns 4 embedding vectors (in total 8) separately for key and value vectors.

        Considering the input c

        - e(t-2) corresponds to c -> a
        - e(t-2) corresponds to c -> b
        - e(t-2) corresponds to c -> d
        - e(t-2) corresponds to c -> e

        These embeddings are shared among different time steps. So input a, b, d and e also uses
        the same embeddings.

        Embeddings are ignored when the relative window is out of limit for the first and the last
        n items.

    Args:
        channels (int): input and inner layer channels.
        out_channels (int): output channels.
        num_heads (int): number of attention heads.
        rel_attn_window_size (int, optional): relation attention window size.
            If 4, for each time step next and previous 4 time steps are attended.
            If default, relative encoding is disabled and it is a regular transformer.
            Defaults to None.
        heads_share (bool, optional): [description]. Defaults to True.
        dropout_p (float, optional): dropout rate. Defaults to 0..
        input_length (int, optional): intput length for positional encoding. Defaults to None.
        proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False.
        proximal_init (bool, optional): enable/disable poximal init as in the paper.
            Init key and query layer weights the same. Defaults to False.
    """

    def __init__(
        self,
        channels,
        out_channels,
        num_heads,
        rel_attn_window_size=None,
        heads_share=True,
        dropout_p=0.0,
        input_length=None,
        proximal_bias=False,
        proximal_init=False,
    ):

        super().__init__()
        assert channels % num_heads == 0, " [!] channels should be divisible by num_heads."
        # class attributes
        self.channels = channels
        self.out_channels = out_channels
        self.num_heads = num_heads
        self.rel_attn_window_size = rel_attn_window_size
        self.heads_share = heads_share
        self.input_length = input_length
        self.proximal_bias = proximal_bias
        self.dropout_p = dropout_p
        self.attn = None
        # query, key, value layers
        self.k_channels = channels // num_heads
        self.conv_q = nn.Conv1d(channels, channels, 1)
        self.conv_k = nn.Conv1d(channels, channels, 1)
        self.conv_v = nn.Conv1d(channels, channels, 1)
        # output layers
        self.conv_o = nn.Conv1d(channels, out_channels, 1)
        self.dropout = nn.Dropout(dropout_p)
        # relative positional encoding layers
        if rel_attn_window_size is not None:
            n_heads_rel = 1 if heads_share else num_heads
            rel_stddev = self.k_channels ** -0.5
            emb_rel_k = nn.Parameter(
                torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
            )
            emb_rel_v = nn.Parameter(
                torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
            )
            self.register_parameter("emb_rel_k", emb_rel_k)
            self.register_parameter("emb_rel_v", emb_rel_v)

        # init layers
        nn.init.xavier_uniform_(self.conv_q.weight)
        nn.init.xavier_uniform_(self.conv_k.weight)
        # proximal bias
        if proximal_init:
            self.conv_k.weight.data.copy_(self.conv_q.weight.data)
            self.conv_k.bias.data.copy_(self.conv_q.bias.data)
        nn.init.xavier_uniform_(self.conv_v.weight)

    def forward(self, x, c, attn_mask=None):
        """
        Shapes:
            - x: :math:`[B, C, T]`
            - c: :math:`[B, C, T]`
            - attn_mask: :math:`[B, 1, T, T]`
        """
        q = self.conv_q(x)
        k = self.conv_k(c)
        v = self.conv_v(c)
        x, self.attn = self.attention(q, k, v, mask=attn_mask)
        x = self.conv_o(x)
        return x

    def attention(self, query, key, value, mask=None):
        # reshape [b, d, t] -> [b, n_h, t, d_k]
        b, d, t_s, t_t = (*key.size(), query.size(2))
        query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3)
        key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
        value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
        # compute raw attention scores
        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
        # relative positional encoding for scores
        if self.rel_attn_window_size is not None:
            assert t_s == t_t, "Relative attention is only available for self-attention."
            # get relative key embeddings
            key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
            rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
            rel_logits = self._relative_position_to_absolute_position(rel_logits)
            scores_local = rel_logits / math.sqrt(self.k_channels)
            scores = scores + scores_local
        # proximan bias
        if self.proximal_bias:
            assert t_s == t_t, "Proximal bias is only available for self-attention."
            scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype)
        # attention score masking
        if mask is not None:
            # add small value to prevent oor error.
            scores = scores.masked_fill(mask == 0, -1e4)
            if self.input_length is not None:
                block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length)
                scores = scores * block_mask + -1e4 * (1 - block_mask)
        # attention score normalization
        p_attn = F.softmax(scores, dim=-1)  # [b, n_h, t_t, t_s]
        # apply dropout to attention weights
        p_attn = self.dropout(p_attn)
        # compute output
        output = torch.matmul(p_attn, value)
        # relative positional encoding for values
        if self.rel_attn_window_size is not None:
            relative_weights = self._absolute_position_to_relative_position(p_attn)
            value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
            output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
        output = output.transpose(2, 3).contiguous().view(b, d, t_t)  # [b, n_h, t_t, d_k] -> [b, d, t_t]
        return output, p_attn

    @staticmethod
    def _matmul_with_relative_values(p_attn, re):
        """
        Args:
            p_attn (Tensor): attention weights.
            re (Tensor): relative value embedding vector. (a_(i,j)^V)

        Shapes:
            -p_attn: :math:`[B, H, T, V]`
            -re: :math:`[H or 1, V, D]`
            -logits: :math:`[B, H, T, D]`
        """
        logits = torch.matmul(p_attn, re.unsqueeze(0))
        return logits

    @staticmethod
    def _matmul_with_relative_keys(query, re):
        """
        Args:
            query (Tensor): batch of query vectors. (x*W^Q)
            re (Tensor): relative key embedding vector. (a_(i,j)^K)

        Shapes:
            - query: :math:`[B, H, T, D]`
            - re: :math:`[H or 1, V, D]`
            - logits: :math:`[B, H, T, V]`
        """
        # logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)])
        logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1))
        return logits

    def _get_relative_embeddings(self, relative_embeddings, length):
        """Convert embedding vestors to a tensor of embeddings"""
        # Pad first before slice to avoid using cond ops.
        pad_length = max(length - (self.rel_attn_window_size + 1), 0)
        slice_start_position = max((self.rel_attn_window_size + 1) - length, 0)
        slice_end_position = slice_start_position + 2 * length - 1
        if pad_length > 0:
            padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
        else:
            padded_relative_embeddings = relative_embeddings
        used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
        return used_relative_embeddings

    @staticmethod
    def _relative_position_to_absolute_position(x):
        """Converts tensor from relative to absolute indexing for local attention.
        Shapes:
            x: :math:`[B, C, T, 2 * T - 1]`
        Returns:
            A Tensor of shape :math:`[B, C, T, T]`
        """
        batch, heads, length, _ = x.size()
        # Pad to shift from relative to absolute indexing.
        x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0])
        # Pad extra elements so to add up to shape (len+1, 2*len-1).
        x_flat = x.view([batch, heads, length * 2 * length])
        x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
        # Reshape and slice out the padded elements.
        x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
        return x_final

    @staticmethod
    def _absolute_position_to_relative_position(x):
        """
        Shapes:
            - x: :math:`[B, C, T, T]`
            - ret: :math:`[B, C, T, 2*T-1]`
        """
        batch, heads, length, _ = x.size()
        # padd along column
        x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
        x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
        # add 0's in the beginning that will skew the elements after reshape
        x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
        x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
        return x_final

    @staticmethod
    def _attn_proximity_bias(length):
        """Produce an attention mask that discourages distant
        attention values.
        Args:
            length (int): an integer scalar.
        Returns:
            a Tensor with shape :math:`[1, 1, T, T]`
        """
        # L
        r = torch.arange(length, dtype=torch.float32)
        # L x L
        diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
        # scale mask values
        diff = -torch.log1p(torch.abs(diff))
        # 1 x 1 x L x L
        return diff.unsqueeze(0).unsqueeze(0)


class FeedForwardNetwork(nn.Module):
    """Feed Forward Inner layers for Transformer.

    Args:
        in_channels (int): input tensor channels.
        out_channels (int): output tensor channels.
        hidden_channels (int): inner layers hidden channels.
        kernel_size (int): conv1d filter kernel size.
        dropout_p (float, optional): dropout rate. Defaults to 0.
    """

    def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False):

        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dropout_p = dropout_p

        if causal:
            self.padding = self._causal_padding
        else:
            self.padding = self._same_padding

        self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size)
        self.conv_2 = nn.Conv1d(hidden_channels, out_channels, kernel_size)
        self.dropout = nn.Dropout(dropout_p)

    def forward(self, x, x_mask):
        x = self.conv_1(self.padding(x * x_mask))
        x = torch.relu(x)
        x = self.dropout(x)
        x = self.conv_2(self.padding(x * x_mask))
        return x * x_mask

    def _causal_padding(self, x):
        if self.kernel_size == 1:
            return x
        pad_l = self.kernel_size - 1
        pad_r = 0
        padding = [[0, 0], [0, 0], [pad_l, pad_r]]
        x = F.pad(x, self._pad_shape(padding))
        return x

    def _same_padding(self, x):
        if self.kernel_size == 1:
            return x
        pad_l = (self.kernel_size - 1) // 2
        pad_r = self.kernel_size // 2
        padding = [[0, 0], [0, 0], [pad_l, pad_r]]
        x = F.pad(x, self._pad_shape(padding))
        return x

    @staticmethod
    def _pad_shape(padding):
        l = padding[::-1]
        pad_shape = [item for sublist in l for item in sublist]
        return pad_shape


class RelativePositionTransformer(nn.Module):
    """Transformer with Relative Potional Encoding.
    https://arxiv.org/abs/1803.02155

    Args:
        in_channels (int): number of channels of the input tensor.
        out_chanels (int): number of channels of the output tensor.
        hidden_channels (int): model hidden channels.
        hidden_channels_ffn (int): hidden channels of FeedForwardNetwork.
        num_heads (int): number of attention heads.
        num_layers (int): number of transformer layers.
        kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1.
        dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0.
        rel_attn_window_size (int, optional): relation attention window size.
            If 4, for each time step next and previous 4 time steps are attended.
            If default, relative encoding is disabled and it is a regular transformer.
            Defaults to None.
        input_length (int, optional): input lenght to limit position encoding. Defaults to None.
        layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm
            primitive. Use type "2", type "1: is for backward compat. Defaults to "1".
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        hidden_channels: int,
        hidden_channels_ffn: int,
        num_heads: int,
        num_layers: int,
        kernel_size=1,
        dropout_p=0.0,
        rel_attn_window_size: int = None,
        input_length: int = None,
        layer_norm_type: str = "1",
    ):
        super().__init__()
        self.hidden_channels = hidden_channels
        self.hidden_channels_ffn = hidden_channels_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.kernel_size = kernel_size
        self.dropout_p = dropout_p
        self.rel_attn_window_size = rel_attn_window_size
        self.out_channels = out_channels

        self.dropout = nn.Dropout(dropout_p)
        self.attn_layers = nn.ModuleList()
        self.norm_layers_1 = nn.ModuleList()
        self.ffn_layers = nn.ModuleList()
        self.norm_layers_2 = nn.ModuleList()

        for idx in range(self.num_layers):
            self.attn_layers.append(
                RelativePositionMultiHeadAttention(
                    hidden_channels if idx != 0 else in_channels,
                    hidden_channels,
                    num_heads,
                    rel_attn_window_size=rel_attn_window_size,
                    dropout_p=dropout_p,
                    input_length=input_length,
                )
            )
            if layer_norm_type == "1":
                self.norm_layers_1.append(LayerNorm(hidden_channels))
            elif layer_norm_type == "2":
                self.norm_layers_1.append(LayerNorm2(hidden_channels))
            else:
                raise ValueError(" [!] Unknown layer norm type")

            if hidden_channels != out_channels and (idx + 1) == self.num_layers:
                self.proj = nn.Conv1d(hidden_channels, out_channels, 1)

            self.ffn_layers.append(
                FeedForwardNetwork(
                    hidden_channels,
                    hidden_channels if (idx + 1) != self.num_layers else out_channels,
                    hidden_channels_ffn,
                    kernel_size,
                    dropout_p=dropout_p,
                )
            )

            if layer_norm_type == "1":
                self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels))
            elif layer_norm_type == "2":
                self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels))
            else:
                raise ValueError(" [!] Unknown layer norm type")

    def forward(self, x, x_mask):
        """
        Shapes:
            - x: :math:`[B, C, T]`
            - x_mask: :math:`[B, 1, T]`
        """
        attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
        for i in range(self.num_layers):
            x = x * x_mask
            y = self.attn_layers[i](x, x, attn_mask)
            y = self.dropout(y)
            x = self.norm_layers_1[i](x + y)

            y = self.ffn_layers[i](x, x_mask)
            y = self.dropout(y)

            if (i + 1) == self.num_layers and hasattr(self, "proj"):
                x = self.proj(x)

            if self.out_channels!=1 or i!=(self.num_layers-1):
                x = self.norm_layers_2[i](x + y)
        x = x * x_mask
        return x