Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 81,599 Bytes
19c8b95 887d1eb 19c8b95 887d1eb 19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 |
import os
import re
import sys
import json
import codecs
import glob
from unidecode import unidecode
# from g2pc import G2pC
# FIXME: Does not load it
# from h2p_parser.h2p import H2p
from num2words import num2words
import pykakasi
import epitran
# https://www.lexilogos.com/keyboard/pinyin_conversion.htm
import nltk
nltk.download('punkt', quiet=True)
from nltk.tokenize import word_tokenize
# I really need to find a better way to do this (handling many different possible entry points)
try:
sys.path.append(".")
from resources.app.python.xvapitch.text.ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from resources.app.python.xvapitch.text.en_numbers import normalize_numbers as en_normalize_numbers
from resources.app.python.xvapitch.text.ro_numbers import generateWords as ro_generateWords
except ModuleNotFoundError:
try:
from python.xvapitch.text.ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from python.xvapitch.text.en_numbers import normalize_numbers as en_normalize_numbers
from python.xvapitch.text.ro_numbers import generateWords as ro_generateWords
except ModuleNotFoundError:
try:
from text.ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from text.en_numbers import normalize_numbers as en_normalize_numbers
from text.ro_numbers import generateWords as ro_generateWords
except ModuleNotFoundError:
from ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from en_numbers import normalize_numbers as en_normalize_numbers
from ro_numbers import generateWords as ro_generateWords
# Processing order:
# - text-to-text, clean up numbers
# - text-to-text, clean up abbreviations
# - text->phone, Custom dict replacements
# - text->phone, Heteronyms detection and replacement
# - text->phone, built-in dicts replacements (eg CMUdict)
# - text->text/phone, missed words ngram/POS splitting, and re-trying built-in dicts (eg CMUdict)
# - text->phone, g2p (eg espeak)
# - phone->[integer], convert phonemes to their index numbers, for use by the models
# class EspeakWrapper(object):
# def __init__(self, base_dir, lang):
# super(EspeakWrapper, self).__init__()
# from phonemizer.backend import EspeakBackend
# from phonemizer.backend.espeak.base import BaseEspeakBackend
# # from phonemizer.backend.espeak import EspeakBackend
# from phonemizer.separator import Separator
# base_dir = f'C:/Program Files/'
# espeak_dll_path = f'{base_dir}/eSpeak_NG/libespeak-ng.dll'
# # espeak_dll_path = f'{base_dir}/libespeak-ng.dll'
# # espeak_dll_path = f'{base_dir}/'
# print(f'espeak_dll_path, {espeak_dll_path}')
# BaseEspeakBackend.set_library(espeak_dll_path)
# # EspeakBackend.set_library(espeak_dll_path)
# self.backend = EspeakBackend(lang)
# print(f'self.backend, {self.backend}')
# self.separator = Separator(phone="|", syllable="", word="")
# print(f'self.separator, {self.separator}')
# def phonemize (self, word):
# return self.backend.phonemize(word, self.separator)
class TextPreprocessor():
def __init__(self, lang_code, lang_code2, base_dir, add_blank=True, logger=None, use_g2p=True, use_epitran=False):
super(TextPreprocessor, self).__init__()
self.use_g2p = use_g2p
self.use_epitran = use_epitran
self.logger = logger
self.ALL_SYMBOLS = ALL_SYMBOLS
self.lang_code = lang_code
self.lang_code2 = lang_code2
self.g2p_cache = {}
self.g2p_cache_path = None
self.add_blank = add_blank
self.dicts = []
self.dict_words = [] # Cache
self.dict_is_custom = [] # Built-in, or custom; Give custom dict entries priority over other pre-processing steps
self._punctuation = '!\'(),.:;? ' # Standard english pronunciation symbols
self.punct_to_whitespace_reg = re.compile(f'[\.,!?]*')
self.espeak = None
self.epitran = None
# self.custom_g2p_fn = None
if lang_code2:
# if self.use_epitran and self.use_g2p:
if self.use_epitran:
self.epitran = epitran.Epitran(self.lang_code2)
elif self.use_g2p:
base_dir = os.path.dirname(os.path.realpath(__file__))
self.espeak = ESpeak(base_dir, language=self.lang_code2, keep_puncs=True)
self.h2p = None
# FIXME: load h2p_parser
# if lang_code=="en":
# self.h2p = H2p(preload=True)
# Regular expression matching text enclosed in curly braces:
self._curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
self.num2words_fn = None
num2words_supported_langs = ["en","ar","cz","de","dk","en_GB","en_IN","es","es_CO","es_VE","eu","fi","fr","fr_CH","fr_BE","fr_DZ","he","id","it","ja","kn","ko","lt","lv","no","pl","pt","pt_BR","sl","sr","ro","ru","sl","tr","th","vi","nl","uk"]
if lang_code in num2words_supported_langs:
self.num2words_fn = num2words
def init_post(self):
self.re_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in self.abbreviations]
# Override - language specific
def clean_numbers(self, text):
return text
# Override - language specific
def clean_am_pm(self, text):
return text
def clean_abbreviations(self, text):
for regex, replacement in self.re_abbreviations:
text = re.sub(regex, replacement, text)
return text
def collapse_whitespace(self, text):
_whitespace_re = re.compile(r'\s+')
return re.sub(_whitespace_re, ' ', text)
def load_dict (self, dict_path, isCustom=False):
pron_dict = {}
if dict_path.endswith(".txt"):
pron_dict = self.read_txt_dict(dict_path, pron_dict)
elif dict_path.endswith(".json"):
pron_dict = self.read_json_dict(dict_path, pron_dict)
pron_dict = self.post_process_dict(pron_dict)
self.dict_is_custom.append(isCustom)
self.dicts.append(pron_dict)
self.dict_words.append(list(pron_dict.keys()))
# Override
def post_process_dict(self, pron_dict):
return pron_dict
def read_txt_dict (self, dict_path, pron_dict):
with codecs.open(dict_path, encoding="utf-8") as f:
lines = f.read().split("\n")
for line in lines:
if len(line.strip()):
# if len(line.strip()) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
word = line.split(" ")[0].lower()
pron = " ".join(line.split(" ")[1:]).strip().upper()
# TODO? Check if the phonemes are valid?
# TODO? Handle variants(1)
pron_dict[word] = pron
return pron_dict
def read_json_dict (self, dict_path, pron_dict):
with codecs.open(dict_path, encoding="utf-8") as f:
json_data = json.load(f)
for word in list(json_data["data"].keys()):
if json_data["data"][word]["enabled"]==True:
# TODO? Check if the phonemes are valid?
# TODO? Handle variants(1)
pron_dict[word.lower()] = json_data["data"][word]["arpabet"].upper()
return pron_dict
def dict_replace (self, text, customDicts):
for di, pron_dict in enumerate(self.dicts):
if (customDicts and self.dict_is_custom[di]) or (not customDicts and not self.dict_is_custom[di]):
dict_words = self.dict_words[di]
text_graphites = re.sub("{([^}]*)}", "", text, flags=re.IGNORECASE)
# Don't run the ARPAbet replacement for every single word, as it would be too slow. Instead, do it only for words that are actually present in the prompt
words_in_prompt = (text_graphites+" ").replace("}","").replace("{","").replace(",","").replace("?","").replace("!","").replace(";","").replace(":","").replace("...",".").replace(". "," ").lower().split(" ")
words_in_prompt = [word.strip() for word in words_in_prompt if len(word.strip()) and word.lower() in dict_words]
if len(words_in_prompt):
# Pad out punctuation, to make sure they don't get used in the word look-ups
text = " "+text.replace(",", " ,").replace(".", " .").replace("!", " !").replace("?", " ?")+" "
for di, dict_word in enumerate(words_in_prompt):
dict_word_with_spaces = "{"+pron_dict[dict_word]+"}"
dict_word_replace = dict_word.strip().replace(".", "\.").replace("(", "\(").replace(")", "\)")
# Do it twice, because re will not re-use spaces, so if you have two neighbouring words to be replaced,
# and they share a space character, one of them won't get changed
for _ in range(2):
text = re.sub(r'(?<!\{)\b'+dict_word_replace+r'\b(?![\w\s\(\)]*[\}])', dict_word_with_spaces, text, flags=re.IGNORECASE)
# Undo the punctuation padding, to retain the original sentence structure
text = text.replace(" ,", ",").replace(" .", ".").replace(" !", "!").replace(" ?", "?")
text = re.sub("^\s+", " ", text) if text.startswith(" ") else re.sub("^\s*", "", text)
text = re.sub("\s+$", " ", text) if text.endswith(" ") else re.sub("\s*$", "", text)
return text
def detect_and_fill_heteronyms (self, text):
if self.h2p is not None:
text = self.h2p.replace_het(text)
return text
def clean_POS_and_subword_misses (self, text):
# Eg plurals, possessives, contractions, hyphenated, compounds, stem, etc
# TODO
return text
def load_g2p_cache (self, cache_path):
# print(f'[DEBUG] Loading cache: {cache_path}')
self.g2p_cache_path = cache_path
if os.path.exists(cache_path):
with open(cache_path, encoding="utf8") as f:
lines = f.read().split("\n")
for line in lines:
if "|" in line:
word = line.split("|")[0]
phones = "|".join(line.split("|")[1:])
self.g2p_cache[word.lower().strip()] = phones.strip()
else:
print(f'g2p cache file not found at: {cache_path}')
def save_g2p_cache (self):
if self.g2p_cache_path:
cache_out = []
cache_keys = sorted(list(self.g2p_cache.keys()))
for key in cache_keys:
cache_out.append(f'{key}|{self.g2p_cache[key]}')
with open(self.g2p_cache_path, "w+", encoding="utf8") as f:
f.write("\n".join(cache_out))
# Override
def fill_missing_via_g2p (self, text):
# TODO, switch to from nltk.tokenize import word_tokenize
orig_text = text
# print(f'[g2p] orig_text, |{orig_text}|')
text_parts = text.split("{")
text_parts2 = [(part.split("}")[1] if "}" in part else part) for part in text_parts]
# print(f'[g2p] text_parts, {text_parts}')
# print(f'[g2p] text_parts2, {text_parts2}')
phonemised = []
for part in text_parts2:
words = part.split(" ")
part_phonemes = []
for word in words:
word = word.strip()
if len(word):
# print(f'\n[g2p] word, {word}')
sub_parts = []
sub_part_phonemes = []
# ====== punctuation stuff start ========
# Get which punctuation symbols are contained in the text fragment
puncs_contained = []
for punc in PUNCTUATION:
if punc in word:
puncs_contained.append(punc)
# Split away the punctuation from text
sub_parts = [word]
# print(f'puncs_contained, {puncs_contained}')
if len(puncs_contained):
for punc in puncs_contained:
# init a new sub part list (list 2)
sub_parts2 = []
# for each sub part...
for sp in sub_parts:
sp = sp.strip()
# ...if it not already a punctuation symbol, try splitting it by the current punctuation symbol
if sp not in PUNCTUATION:
sp_split = sp.split(punc)
# if the split list length is 1, add to list 2
if len(sp_split)==1:
sub_parts2.append(sp_split[0])
else:
# if it's more than 1
# print(f'sp_split, {sp_split}')
for spspi, sps_part in enumerate(sp_split):
# iterate through each item, and add to list, but also add the punct, apart from the last item
sub_parts2.append(sps_part)
if spspi<(len(sp_split)-1):
sub_parts2.append(punc)
else:
# otherwise add the punct to list 2
sub_parts2.append(sp)
# set the sub parts list to list 2, for the next loop, or ready
sub_parts = sub_parts2
else:
sub_parts = [word]
# ====== punctuation stuff end ========
# print(f'sub_parts, {sub_parts}')
for sp in sub_parts:
if sp in PUNCTUATION:
sub_part_phonemes.append(sp)
else:
sp = sp.replace("\"", "").replace(")", "").replace("(", "").replace("]", "").replace("[", "").strip()
if len(sp):
# print(f'sp, {sp}')
if sp.lower() in self.g2p_cache.keys() and len(self.g2p_cache[sp.lower()].strip()):
# print("in cache")
g2p_out = ipa2xvaarpabet(self.g2p_cache[sp.lower()])
# print(f'g2p_out, {g2p_out}')
sub_part_phonemes.append(g2p_out)
else:
if self.use_g2p or "custom_g2p_fn" in dir(self) or self.use_epitran:
# print(f'self.custom_g2p_fn, {self.custom_g2p_fn}')
if "custom_g2p_fn" in dir(self):
g2p_out = self.custom_g2p_fn(sp)
elif self.use_epitran:
g2p_out = self.epitran.transliterate(sp)
else:
g2p_out = self.espeak.phonemize(sp).replace("|", " ")
# print(f'g2p_out, {g2p_out}')
self.g2p_cache[sp.lower()] = g2p_out
self.save_g2p_cache()
g2p_out = ipa2xvaarpabet(g2p_out)
# print(f'g2p_out, {g2p_out}')
sub_part_phonemes.append(g2p_out)
# print(f'sp, {sp} ({len(self.g2p_cache.keys())}) {g2p_out}')
part_phonemes.append(" ".join(sub_part_phonemes))
phonemised.append(" _ ".join(part_phonemes))
# print("--")
# print(f'text_parts ({len(text_parts)}), {text_parts}')
# print(f'[g2p] phonemised ({len(phonemised)}), {phonemised}')
text = []
for ppi, phon_part in enumerate(phonemised):
# print(f'phon_part, {phon_part}')
prefix = ""
if "}" in text_parts[ppi]:
if ppi<len(phonemised)-1 and text_parts[ppi].split("}")[1].startswith(" "):
prefix = text_parts[ppi].split("}")[0]+" _ "
else:
prefix = text_parts[ppi].split("}")[0]+" "
text.append(f'{prefix} {phon_part}')
# print(f'[g2p] text ({len(text)}), {text}')
text_final = []
for tpi, text_part in enumerate(text):
if tpi!=0 or text_part.strip()!="" or not orig_text.startswith("{"):
# print(not orig_text.startswith("{"), tpi, f'|{text_part.strip()}|')
text_final.append(text_part)
if (tpi or orig_text.startswith(" ")) and ((tpi<len(text_parts2)-1 and text_parts2[tpi+1].startswith(" ")) or text_parts2[tpi].endswith(" ")):
# print("adding _")
text_final.append("_")
text = " ".join(text_final).replace(" ", " ").replace(" ", " ").replace(" _ _ ", " _ ").replace(" _ _ ", " _ ")
return text
# Convert IPA fragments not already replaced by dicts/rules via espeak and post-processing
def ipa_to_xVAARPAbet (self, ipa_text):
xVAARPAbet = ipa2xvaarpabet(ipa_text)
return xVAARPAbet
def clean_special_chars(self, text):
return text.replace("*","")
def text_to_phonemes (self, text):
text = self.clean_special_chars(text)
text = self.collapse_whitespace(text).replace(" }", "}").replace("{ ", "{")
text = self.clean_am_pm(text)
text = self.clean_numbers(text)
# print(f'clean_numbers: |{text}|')
text = self.clean_abbreviations(text)
# print(f'clean_abbreviations: |{text}|')
text = self.dict_replace(text, customDicts=True)
# print(f'dict_replace(custom): |{text}|')
text = self.detect_and_fill_heteronyms(text)
# print(f'detect_and_fill_heteronyms: |{text}|')
text = self.dict_replace(text, customDicts=False)
# print(f'dict_replace(built-in):, |{text}|')
text = self.clean_POS_and_subword_misses(text)
# print(f'clean_POS_and_subword_misses: |{text}|')
text = self.fill_missing_via_g2p(text)
# print(f'fill_missing_via_g2p: |{text}|')
return text
# Main entry-point for pre-processing text completely into phonemes
# This converts not the phonemes, but to the index numbers for the phonemes list, as required by the models
def text_to_sequence (self, text):
orig_text = text
text = self.text_to_phonemes(text) # Get 100% phonemes from the text
text = self.collapse_whitespace(text).strip() # Get rid of duplicate/padding spaces
phonemes = text.split(" ")
phonemes_final = []
for pi,phone in enumerate(phonemes):
if phone in manual_phone_replacements.keys():
phonemes_final.append(manual_phone_replacements[phone])
else:
phonemes_final.append(phone)
# print(f'phonemes, {phonemes}')
# with open(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/debug.txt', "w+") as f:
# f.write(" ".join(phonemes))
# sequence = [ALL_SYMBOLS.index(phone) for phone in phonemes]
# blacklist = ["#"]
try:
sequence = []
for phone in phonemes_final:
if phone=="#": # The g2p something returns things like "# foreign french". Cut away the commented out stuff, when this happens
break
if len(phone.strip()):
sequence.append(ALL_SYMBOLS.index(phone))
# sequence = [ALL_SYMBOLS.index(phone) for phone in phonemes_final if len(phone) and phone.strip() not in blacklist]
except:
print(orig_text, phonemes_final)
raise
# Intersperse blank symbol if required
if self.add_blank:
sequence_ = []
for si,symb in enumerate(sequence):
sequence_.append(symb)
if si<len(sequence)-1:
# sequence_.append(len(ALL_SYMBOLS)-1)
sequence_.append(len(ALL_SYMBOLS)-2)
sequence = sequence_
cleaned_text = "|".join([ALL_SYMBOLS[index] for index in sequence])
return sequence, cleaned_text
def cleaned_text_to_sequence (self, text):
text = self.collapse_whitespace(text).strip() # Get rid of duplicate/padding spaces
phonemes = text.split(" ")
sequence = [ALL_SYMBOLS.index(phone) for phone in phonemes]
return sequence
def sequence_to_text (self, sequence): # Used in debugging
text = []
for ind in sequence[0]:
text.append(ALL_SYMBOLS[ind])
return text
class EnglishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(EnglishTextPreprocessor, self).__init__("en", "en-us", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "English"
self.abbreviations = [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('jr', 'junior'),
('maj', 'major'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]
self.init_post()
# from en_numbers import normalize_numbers
self.normalize_numbers = en_normalize_numbers
def post_process_dict (self, pron_dict):
# CMUdict doesn't contain the symbols on the left. Therefore, these must be mapped to symbols that the models have actually
# been trained with. This is only the case for CMUdict, so for English-trained models
ARPAbet_replacements_dict = {
"YO": "IY0 UW0",
"UH": "UH0",
"AR": "R",
"EY": "EY0",
"A": "AA0",
"AW": "AW0",
"X": "K S",
"CX": "K HH",
"AO": "AO0",
"PF": "P F",
"AY": "AY0",
"OE": "OW0 IY0",
"IY": "IY0",
"EH": "EH0",
"OY": "OY0",
"IH": "IH0",
"H": "HH"
}
for word in pron_dict.keys():
phonemes = pron_dict[word]
for key in ARPAbet_replacements_dict.keys():
phonemes = phonemes.replace(f' {key} ', f' {ARPAbet_replacements_dict[key]} ')
# Do it twice, because re will not re-use spaces, so if you have two neighbouring phonemes to be replaced,
# and they share a space character, one of them won't get changed
phonemes = phonemes.replace(f' {key} ', f' {ARPAbet_replacements_dict[key]} ')
pron_dict[word] = phonemes
return pron_dict
def clean_am_pm (self, text):
words_out = []
numerals = ["0","1","2","3","4","5","6","7","8","9"]
spelled_out = ["teen","one", "two", "three", "four", "five", "six", "seven", "eight", "nine","ten","twenty","thirty","forty","fivty","o'clock"]
words = text.split(" ")
for word in words:
if word[:2].lower().strip()=="am":
finishes_with_spelled_out_numeral = False
for spelled_out_n in spelled_out:
if len(words_out) and words_out[-1].endswith(spelled_out_n):
finishes_with_spelled_out_numeral = True
break
if len(words_out) and words_out[-1] != '' and words_out[-1][-1] in numerals or finishes_with_spelled_out_numeral:
word = "{EY0 IH0} {EH0 M}"+word[2:]
words_out.append(word)
return " ".join(words_out)
def clean_numbers (self, text):
# This (inflect code) also does things like currency, magnitudes, etc
final_parts = []
# print(f'text, {text}')
parts = re.split("({([^}]*)})", text)
skip_next = False
for part in parts:
if "{" in part:
final_parts.append(part)
skip_next = True
# print(f'[clean_numbers] keeping: {part}')
else:
if skip_next:
skip_next = False
else:
# print(f'[clean_numbers] doing: {part}')
final_parts.append(self.normalize_numbers(part))
text = "".join(final_parts)
# print(f'[clean_numbers] parts, {parts}')
return text
# return self.normalize_numbers(text)
def text_to_sequence(self, text):
text = unidecode(text) # transliterate non-english letters to English, if they can be ascii
return super(EnglishTextPreprocessor, self).text_to_sequence(text)
class FrenchTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(FrenchTextPreprocessor, self).__init__("fr", "fr-fr", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "French"
self.abbreviations = [
("M", "monsieur"),
("Mlle", "mademoiselle"),
("Mlles", "mesdemoiselles"),
("Mme", "Madame"),
("Mmes", "Mesdames"),
("N.B", "nota bene"),
("M", "monsieur"),
("p.c.q", "parce que"),
("Pr", "professeur"),
("qqch", "quelque chose"),
("rdv", "rendez-vous"),
("no", "numéro"),
("adr", "adresse"),
("dr", "docteur"),
("st", "saint"),
("jr", "junior"),
("sgt", "sergent"),
("capt", "capitain"),
("col", "colonel"),
("av", "avenue"),
("av. J.-C", "avant Jésus-Christ"),
("apr. J.-C", "après Jésus-Christ"),
("boul", "boulevard"),
("c.-à-d", "c’est-à-dire"),
("etc", "et cetera"),
("ex", "exemple"),
("excl", "exclusivement"),
("boul", "boulevard"),
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# https://github.com/virgil-av/numbers-to-words-romanian/blob/master/src/index.ts
class RomanianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(RomanianTextPreprocessor, self).__init__("ro", "ro", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Romanian"
self.abbreviations = [
]
self.normalize_numbers = ro_generateWords
self.init_post()
class ItalianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(ItalianTextPreprocessor, self).__init__("it", "it", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Italian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class DanishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(DanishTextPreprocessor, self).__init__("da", "da", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Danish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class GermanTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(GermanTextPreprocessor, self).__init__("de", "de", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "German"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class AmharicTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(AmharicTextPreprocessor, self).__init__("am", "amh-Ethi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Amharic"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class ArabicTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(ArabicTextPreprocessor, self).__init__("ar", "ar", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Arabic"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class MongolianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(MongolianTextPreprocessor, self).__init__("mn", "mon-Cyrl", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Mongolian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class DutchTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(DutchTextPreprocessor, self).__init__("nl", "nl", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Dutch"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class FinnishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(FinnishTextPreprocessor, self).__init__("fi", "fi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Finnish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class GreekTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(GreekTextPreprocessor, self).__init__("el", "el", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Greek"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class HausaTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(HausaTextPreprocessor, self).__init__("ha", "hau-Latn", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Hausa"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class HindiTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(HindiTextPreprocessor, self).__init__("hi", "hi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Hindi"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class HungarianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(HungarianTextPreprocessor, self).__init__("hu", "hu", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Hungarian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class JapaneseTextPreprocessor(TextPreprocessor):
# Japanese: https://github.com/coqui-ai/TTS/blob/main/TTS/tts/utils/text/japanese/phonemizer.py
# https://pypi.org/project/pykakasi/
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(JapaneseTextPreprocessor, self).__init__("jp", "ja", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Japanese"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
def text_to_phonemes (self, line):
kks = pykakasi.kakasi()
line = kks.convert(line)
line = " ".join([part["hira"] for part in line])
# print(f'line, {line}')
return super(JapaneseTextPreprocessor, self).text_to_phonemes(line)
class KoreanTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(KoreanTextPreprocessor, self).__init__("ko", "ko", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Korean"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class LatinTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(LatinTextPreprocessor, self).__init__("la", "la", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Latin"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class PolishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(PolishTextPreprocessor, self).__init__("pl", "pl", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Polish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class PortugueseTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(PortugueseTextPreprocessor, self).__init__("pt", "pt", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Portuguese"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class RussianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(RussianTextPreprocessor, self).__init__("ru", "ru", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Russian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class SpanishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(SpanishTextPreprocessor, self).__init__("es", "es", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Spanish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class SwahiliTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(SwahiliTextPreprocessor, self).__init__("sw", "sw", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Swahili"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class SwedishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(SwedishTextPreprocessor, self).__init__("sv", "sv", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Swedish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# from thai_segmenter import sentence_segment
class ThaiTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
# super(ThaiTextPreprocessor, self).__init__("th", "th", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
super(ThaiTextPreprocessor, self).__init__("th", "tha-Thai", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
# super(ThaiTextPreprocessor, self).__init__("th", "hau-Latn", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=True)
self.lang_name = "Thai"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
def text_to_phonemes (self, line):
final_line = line
# try:
# line = line.encode('utf8', errors='ignore').decode('utf8', errors='ignore')
# sentence_parts = sentence_segment(line)
# for part in list(sentence_parts):
# for sub_part in part.pos:
# final_line.append(sub_part[0])
# final_line.append(".")
# final_line = " ".join(final_line)
# except:
# pass
return super(ThaiTextPreprocessor, self).text_to_phonemes(final_line)
class TurkishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(TurkishTextPreprocessor, self).__init__("tr", "tr", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Turkish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class UkrainianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(UkrainianTextPreprocessor, self).__init__("uk", "uk", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Ukrainian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class VietnameseTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(VietnameseTextPreprocessor, self).__init__("vi", "vi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Vietnamese"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# https://polyglotclub.com/wiki/Language/Wolof/Pronunciation/Alphabet-and-Pronunciation#:~:text=Wolof%20Alphabet,-VowelsEdit&text=Single%20vowels%20are%20short%2C%20geminated,British)%20English%20%22sawed%22.
# https://huggingface.co/abdouaziiz/wav2vec2-xls-r-300m-wolof
class WolofTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(WolofTextPreprocessor, self).__init__("wo", "wo", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=False)
self.lang_name = "Wolof"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# A very basic, lossy Wolof -> IPA converter. There were no g2p libraries supporting Wolof at the time of writing. It was this or nothing.
def custom_g2p_fn(self, word):
# print(f'custom_g2p_fn | IN: {word}')
word = word.lower()
# lossy
word = word.replace("à", "a")
word = word.replace("ó", "o")
word = word.replace("aa", "aː")
word = re.sub('a(?!:)', 'ɐ', word)
word = word.replace("bb", "bː")
word = word.replace("cc", "cːʰ")
word = word.replace("dd", "dː")
word = word.replace("ee", "ɛː")
word = word.replace("ée", "eː")
word = word.replace("ëe", "əː")
word = re.sub('e(?!:)', 'ɛ', word)
word = re.sub('ë(?!:)', 'ə', word)
word = word.replace("gg", "gː")
word = word.replace("ii", "iː")
word = word.replace("jj", "ɟːʰ")
word = re.sub('j(?!:)', 'ɟ', word)
word = word.replace("kk", "kːʰ")
word = word.replace("ll", "ɫː")
word = word.replace("mb", "m̩b")
word = word.replace("mm", "mː")
word = word.replace("nc", "ɲc")
word = word.replace("nd", "n̩d")
word = word.replace("ng", "ŋ̩g")
word = word.replace("nj", "ɲɟ")
word = word.replace("nk", "ŋ̩k")
word = word.replace("nn", "nː")
word = word.replace("nq", "ɴq")
word = word.replace("nt", "n̩t")
word = word.replace("ññ", "ɲː")
word = word.replace("ŋŋ", "ŋː")
word = re.sub('ñ(?!:)', 'ɲ', word)
word = word.replace("oo", "oː")
word = word.replace("o", "ɔ")
word = word.replace("pp", "pːʰ")
word = word.replace("rr", "rː")
word = word.replace("tt", "tːʰ")
word = word.replace("uu", "uː")
word = word.replace("ww", "wː")
word = word.replace("yy", "jː")
word = word.replace("y", "j")
# lossy
word = word.replace("é", "e")
word = word.replace("ë", "e")
word = word.replace("ñ", "n")
word = word.replace("ŋ", "n")
# print(f'custom_g2p_fn | OUT: {word}')
return word
# def save_g2p_cache(self):
# # TEMPORARY
# pass
class YorubaTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(YorubaTextPreprocessor, self).__init__("yo", "yor-Latn", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Yoruba"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class ChineseTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(ChineseTextPreprocessor, self).__init__("zh", None, base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Chinese"
self.abbreviations = [
]
self.init_post()
# self.g2p = None
# if self.use_g2p:
# self.g2p = G2pC()
from g2pc import G2pC
self.g2p = G2pC()
self.TEMP_unhandled = []
def split_pinyin (self, pinyin):
symbs_split = []
pinyin = pinyin.lower()
splitting_symbs = ["zh", "ch", "sh", "b", "p", "m", "f", "d", "t", "n", "l", "g", "k", "h", "z", "c", "s", "r", "j", "q", "x"]
for ss in splitting_symbs:
# if phon.startswith(ss) and not phon.endswith("i"):
if pinyin.startswith(ss):
symbs_split.append(ss.upper())
pinyin = pinyin[len(ss):]
break
symbs_split.append(pinyin.upper())
return symbs_split
def post_process_pinyin_symbs (self, symbs):
post_processed = []
# splitting_symbs = ["zh", "ch", "sh", "b", "p", "m", "f", "d", "t", "n", "l", "g", "k", "h", "z", "c", "s", "r", "j", "q", "x"]
for symb in symbs.split(" "):
if len(symb)==0:
continue
symbs = self.split_pinyin(symb)
for symb in symbs:
post_processed.append(symb)
# for ss in splitting_symbs:
# # if phon.startswith(ss) and not phon.endswith("i"):
# if symb.startswith(ss):
# post_processed.append(ss.upper())
# symb = symb[len(ss):]
# break
# post_processed.append(symb.upper())
return " ".join(post_processed)
def fill_missing_via_g2p_zh (self, text):
# TODO, switch to from nltk.tokenize import word_tokenize
orig_text = text
# print(f'[g2p] orig_text, |{orig_text}|')
text_parts = text.split("{")
text_parts2 = [(part.split("}")[1] if "}" in part else part) for part in text_parts]
# print(f'[g2p] text_parts, {text_parts}')
# print(f'[g2p] text_parts2, {text_parts2}')
phonemised = []
for part in text_parts2:
# words = part.split(" ")
words = [part]
part_phonemes = []
for word in words:
word = word.strip()
if len(word):
# print(f'[g2p] word, {word}')
sub_parts = []
sub_part_phonemes = []
# ====== punctuation stuff start ========
# Get which punctuation symbols are contained in the text fragment
puncs_contained = []
for punc in PUNCTUATION:
if punc in word:
puncs_contained.append(punc)
# Split away the punctuation from text
sub_parts = [word]
# print(f'puncs_contained, {puncs_contained}')
if len(puncs_contained):
for punc in puncs_contained:
# init a new sub part list (list 2)
sub_parts2 = []
# for each sub part...
for sp in sub_parts:
sp = sp.strip()
# ...if it not already a punctuation symbol, try splitting it by the current punctuation symbol
if sp not in PUNCTUATION:
sp_split = sp.split(punc)
# if the split list length is 1, add to list 2
if len(sp_split)==1:
sub_parts2.append(sp_split[0])
else:
# if it's more than 1
# print(f'sp_split, {sp_split}')
for spspi, sps_part in enumerate(sp_split):
# iterate through each item, and add to list, but also add the punct, apart from the last item
sub_parts2.append(sps_part)
if spspi<(len(sp_split)-1):
sub_parts2.append(punc)
else:
# otherwise add the punct to list 2
sub_parts2.append(sp)
# set the sub parts list to list 2, for the next loop, or ready
sub_parts = sub_parts2
else:
sub_parts = [word]
# ====== punctuation stuff end ========
# print(f'sub_parts, {sub_parts}')
for sp in sub_parts:
if sp in PUNCTUATION:
sub_part_phonemes.append(sp)
else:
sp = sp.replace("\"", "").replace(")", "").replace("(", "").replace("]", "").replace("[", "").strip()
if len(sp):
if sp.lower() in self.g2p_cache.keys() and len(self.g2p_cache[sp.lower()].strip()):
g2p_out = self.g2p_cache[sp.lower()]
g2p_out = self.post_process_pinyin_symbs(g2p_out)
sub_part_phonemes.append(g2p_out)
else:
# print(f'sp, {sp} ({len(self.g2p_cache.keys())})')
# g2p_out = self.espeak.phonemize(sp).replace("|", " ")
g2p_out = self.g2p(sp)
g2p_out = " ".join([out_part[2] for out_part in g2p_out])
self.g2p_cache[sp.lower()] = g2p_out
self.save_g2p_cache()
# g2p_out = ipa2xvaarpabet(g2p_out)
g2p_out = self.post_process_pinyin_symbs(g2p_out)
# print(f'g2p_out, {g2p_out}')
sub_part_phonemes.append(g2p_out)
part_phonemes.append(" ".join(sub_part_phonemes))
phonemised.append(" _ ".join(part_phonemes))
# print("--")
# print(f'text_parts ({len(text_parts)}), {text_parts}')
# print(f'[g2p] phonemised ({len(phonemised)}), {phonemised}')
text = []
for ppi, phon_part in enumerate(phonemised):
# print(f'phon_part, {phon_part}')
prefix = ""
if "}" in text_parts[ppi]:
if ppi<len(phonemised)-1 and text_parts[ppi].split("}")[1].startswith(" "):
prefix = text_parts[ppi].split("}")[0]+" _ "
else:
prefix = text_parts[ppi].split("}")[0]+" "
text.append(f'{prefix} {phon_part}')
# print(f'[g2p] text ({len(text)}), {text}')
text_final = []
for tpi, text_part in enumerate(text):
if tpi!=0 or text_part.strip()!="" or not orig_text.startswith("{"):
# print(not orig_text.startswith("{"), tpi, f'|{text_part.strip()}|')
text_final.append(text_part)
if (tpi or orig_text.startswith(" ")) and ((tpi<len(text_parts2)-1 and text_parts2[tpi+1].startswith(" ")) or text_parts2[tpi].endswith(" ")):
# print("adding _")
text_final.append("_")
text = " ".join(text_final).replace(" ", " ").replace(" ", " ").replace(" _ _ ", " _ ").replace(" _ _ ", " _ ")
return text
def preprocess_pinyin (self, text):
# self.logger.info(f'preprocess_pinyin word_tokenize: {word_tokenize(text)}')
tokens = word_tokenize(text)
final_out = []
is_inside_inline_arpabet = False # Used for determining whether to handle token as grapheme of inlined phonemes (or already preproccessed phonemes)
# has_included_inlint_arpabet_start = False # Used to determine if to insert the inline phoneme delimiter start {
for token in tokens:
if token.startswith("{"):
is_inside_inline_arpabet = True
# if len(token.replace("{", "")):
# final_out.append(token.replace("{", ""))
final_out.append(token)
if token.endswith("}"):
is_inside_inline_arpabet = False
final_out.append(token)
if is_inside_inline_arpabet: # The token is an already processed phoneme, from inline or previously processed phonemes. Include without changes
final_out.append(token)
continue
text = text_pinyin_to_pinyin_symbs(token)
text_final = []
text = text.upper().split(" ")
# self.logger.info(f'preprocess_pinyin text: {text}')
for part in text:
# self.logger.info(f'preprocess_pinyin part: {part}')
final_parts = []
# split_symbs = []
do_again = True
# print(f'part, {part}')
while do_again:
# Check to see if the part is a pynyin that starts with one of the consonants that can be split away
split_symbs = self.split_pinyin(part)
# print(f'split_symbs, {split_symbs}')
do_again = False
if len(split_symbs)>1:
# A split happened. Add the first split-pinyin into the list...
final_parts.append(split_symbs[0])
# ... then check if the second half of the split starts with one of the "ending" pinyin phonemes
second_half = split_symbs[1]
for phone in PIN_YIN_ENDS:
if second_half.startswith(phone):
final_parts.append(phone)
second_half = second_half[len(phone):]
if len(second_half):
do_again = True
break
# Check to see if the leftover starts with one of the pinyin to arpabet mappings
for phone_key in pinyin_to_arpabet_mappings.keys():
if second_half.startswith(phone_key):
final_parts.append(pinyin_to_arpabet_mappings[phone_key])
second_half = second_half[len(pinyin_to_arpabet_mappings[phone_key]):]
if len(second_half):
do_again = True
break
part = second_half
else:
# If the part wasn't split up, then check if it starts with a "split" pinyin symbol, but not with the splitting consonants
for phone in PIN_YIN_ENDS:
if part.startswith(phone):
# Starts with an "ending" phoneme, so add to the list and remove from the part
final_parts.append(phone)
part = part[len(phone):]
if len(part):
# Repeat the whole thing, if there's still any left-over stuff
do_again = True
break
# Check to see if the leftover starts with one of the pinyin to arpabet mappings
for phone_key in pinyin_to_arpabet_mappings.keys():
if part.startswith(phone_key):
# Starts with a replacement phone, so add to the list and remove from the part
final_parts.append(pinyin_to_arpabet_mappings[phone_key])
part = part[len(pinyin_to_arpabet_mappings[phone_key]):]
if len(part):
# Repeat the whole thing, if there's still any left-over stuff
do_again = True
break
# print(f'part, {part}')
if len(part):
final_parts.append(part)
# print(f'final_parts, {final_parts}')
# self.logger.info(f'preprocess_pinyin final_parts: {final_parts}')
all_split_are_pinyin = True
final_parts_post = []
for split in final_parts:
if split in pinyin_to_arpabet_mappings.keys():
# self.logger.info(f'preprocess_pinyin changing split from: {split} to {pinyin_to_arpabet_mappings[split]}')
split = pinyin_to_arpabet_mappings[split]
# if split=="J":
# split = "JH"
if split in ALL_SYMBOLS:
final_parts_post.append(split)
else:
if split+"5" in ALL_SYMBOLS:
final_parts_post.append(split+"5")
else:
all_split_are_pinyin = False
# self.logger.info(f'preprocess_pinyin final_parts_post: {final_parts_post}')
if all_split_are_pinyin:
# text_final.append("{"+" ".join(final_parts)+"}")
text_final.append("{"+" ".join(final_parts_post)+"}")
else:
text_final.append(part)
# print(f'text_final, {text_final}')
final_out.append(" ".join(text_final))
# self.logger.info(f'preprocess_pinyin final_out: {final_out}')
text = " ".join(final_out)
# self.logger.info(f'preprocess_pinyin return text: {text}')
return text
def text_to_phonemes (self, text):
# print(f'text_to_phonemes, {text}')
text = self.collapse_whitespace(text).replace(" }", "}").replace("{ ", "{")
text = self.preprocess_pinyin(text)
# text = self.clean_numbers(text)
# print(f'clean_numbers: |{text}|')
# text = self.clean_abbreviations(text)
# print(f'clean_abbreviations: |{text}|')
# text = self.dict_replace(text, customDicts=True)
# print(f'dict_replace(custom): |{text}|')
# text = self.detect_and_fill_heteronyms(text)
# print(f'detect_and_fill_heteronyms: |{text}|')
# text = self.dict_replace(text, customDicts=False)
# print(f'dict_replace(built-in):, |{text}|')
# text = self.clean_POS_and_subword_misses(text)
# self.logger.info(f'clean_POS_and_subword_misses: |{text}|')
text = self.fill_missing_via_g2p_zh(text)
# self.logger.info(f'1 text: {text}')
# text = self.en_processor.text_to_phonemes(text)
# self.logger.info(f'2 text: {text}')
# print(f'fill_missing_via_g2p: |{text}|')
return text
def text_to_sequence (self, text):
orig_text = text
text = self.collapse_whitespace(text) # Get rid of duplicate/padding spaces
text = text.replace("!", "!").replace("?", "?").replace(",", ",").replace("。", ",").replace("…", "...").replace(")", "").replace("(", "")\
.replace("、", ",").replace("“", ",").replace("”", ",").replace(":", ":")
text = self.text_to_phonemes(text) # Get 100% phonemes from the text
# if self.logger is not None:
# self.logger.info(f'1 text: {text}')
# text = self.en_processor.text_to_phonemes(text)
# self.logger.info(f'2 text: {text}')
phonemes = self.collapse_whitespace(text).strip().split(" ")
# self.logger.info(f'1 phonemes: {phonemes}')
sequence = []
for pi,phone in enumerate(phonemes):
phone = phone.replace(":","").strip()
if len(phone):
try:
sequence.append(ALL_SYMBOLS.index(phone))
except:
if phone in pinyin_to_arpabet_mappings.keys():
sequence.append(ALL_SYMBOLS.index(pinyin_to_arpabet_mappings[phone]))
else:
if phone not in ["5"]:
self.TEMP_unhandled.append(f'{orig_text}: {phone}')
# with open(f'F:/Speech/xVA-Synth/python/xvapitch/text/DEBUG.txt', "w+") as f:
# f.write("\n".join(self.TEMP_unhandled))
# Add a space character between each symbol
# if pi is not len(phonemes)-1:
# sequence.append(ALL_SYMBOLS.index("_"))
# Intersperse blank symbol if required
if self.add_blank:
sequence_ = []
for si,symb in enumerate(sequence):
sequence_.append(symb)
if si<len(sequence)-1:
sequence_.append(len(ALL_SYMBOLS)-1)
sequence = sequence_
cleaned_text = "|".join([ALL_SYMBOLS[index] for index in sequence])
return sequence, cleaned_text
def get_text_preprocessor(code, base_dir, logger=None, override_useAnyG2P=None):
tp_codes = {
"am": {
"name": "Amharic",
"tp": AmharicTextPreprocessor,
"dicts": [],
"custom_dicts": [],
"use_g2p": False,
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_am.txt']
},
"ar": {
"name": "Arabic",
"tp": ArabicTextPreprocessor,
"dicts": [f'{base_dir}/dicts/arabic.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ar.txt']
},
"da": {
"name": "Danish",
"tp": DanishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/danish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_da.txt']
},
"de": {
"name": "German",
"tp": GermanTextPreprocessor,
"dicts": [f'{base_dir}/dicts/german.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_de.txt']
},
"el": {
"name": "Greek",
"tp": GreekTextPreprocessor,
"dicts": [f'{base_dir}/dicts/greek.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_el.txt']
},
"en": {
"name": "English",
"tp": EnglishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/cmudict.txt'],
"custom_dicts": glob.glob(f'{base_dir}/../../../arpabet/*.json'),
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_en.txt']
},
"es": {
"name": "Spanish",
"tp": SpanishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/spanish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_es.txt']
},
"fi": {
"name": "Finnish",
"tp": FinnishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/finnish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_fi.txt']
},
"fr": {
"name": "French",
"tp": FrenchTextPreprocessor,
"dicts": [f'{base_dir}/dicts/french.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_fr.txt']
},
"ha": {
"name": "Hausa",
"tp": HausaTextPreprocessor,
# "dicts": [f'{base_dir}/dicts/hausa.txt'],
"dicts": [],
"custom_dicts": [],
"use_g2p": False,
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_ha.txt']
},
"hi": {
"name": "Hindi",
"tp": HindiTextPreprocessor,
"dicts": [f'{base_dir}/dicts/hindi.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_hi.txt']
},
"hu": {
"name": "Hungarian",
"tp": HungarianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/hungarian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_hu.txt']
},
"it": {
"name": "Italian",
"tp": ItalianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/italian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_it.txt']
},
"jp": {
"name": "Japanese",
"tp": JapaneseTextPreprocessor,
"dicts": [f'{base_dir}/dicts/japanese.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_jp.txt']
},
"ko": {
"name": "Korean",
"tp": KoreanTextPreprocessor,
"dicts": [f'{base_dir}/dicts/korean.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ko.txt']
},
"la": {
"name": "Latin",
"tp": LatinTextPreprocessor,
"dicts": [f'{base_dir}/dicts/latin.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_la.txt']
},
"mn": {
"name": "Mongolian",
"tp": MongolianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/mongolian.txt'],
"custom_dicts": [],
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_mn.txt']
},
"nl": {
"name": "Dutch",
"tp": DutchTextPreprocessor,
"dicts": [f'{base_dir}/dicts/dutch.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_nl.txt']
},
"pl": {
"name": "Polish",
"tp": PolishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/polish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_pl.txt']
},
"pt": {
"name": "Portuguese",
"tp": PortugueseTextPreprocessor,
"dicts": [f'{base_dir}/dicts/portuguese_br.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_pt.txt']
},
"ro": {
"name": "Romanian",
"tp": RomanianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/romanian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ro.txt']
},
"ru": {
"name": "Russian",
"tp": RussianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/russian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ru.txt']
},
"sv": {
"name": "Swedish",
"tp": SwedishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/swedish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_sv.txt']
},
"sw": {
"name": "Swahili",
"tp": SwahiliTextPreprocessor,
"dicts": [f'{base_dir}/dicts/swahili.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_sw.txt']
},
"th": {
"name": "Thai",
"tp": ThaiTextPreprocessor,
"dicts": [f'{base_dir}/dicts/thai.txt'],
"custom_dicts": [],
# "use_g2p": F
# "use_g2p": False,
# "g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_th.txt']
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_th.txt']
},
"tr": {
"name": "Turkish",
"tp": TurkishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/turkish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_tr.txt']
},
"uk": {
"name": "Ukrainian",
"tp": UkrainianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/ukrainian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_uk.txt']
},
"vi": {
"name": "Vietnamese",
"tp": VietnameseTextPreprocessor,
"dicts": [f'{base_dir}/dicts/vietnamese.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_vi.txt']
},
"wo": {
"name": "Wolof",
"tp": WolofTextPreprocessor,
# "dicts": [f'{base_dir}/dicts/wolof.txt'],
"dicts": [],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/g2p_cache_wo.txt']
},
"yo": {
"name": "Yoruba",
"tp": YorubaTextPreprocessor,
"dicts": [f'{base_dir}/dicts/yoruba.txt'],
"custom_dicts": [],
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_yo.txt']
},
"zh": {
"name": "Chinese",
"tp": ChineseTextPreprocessor,
"dicts": [],
"custom_dicts": [],
# "use_g2p": False,
"use_g2p": True,
"g2p_cache": [f'{base_dir}/g2p_cache/g2pc_cache_zh.txt']
},
}
use_g2p = tp_codes[code]["use_g2p"] if "use_g2p" in tp_codes[code].keys() else True
# print(f'override_useAnyG2P, {override_useAnyG2P}')
if override_useAnyG2P is False:
use_g2p = override_useAnyG2P
tp_codes[code]["use_epitran"] = override_useAnyG2P
tp_codes[code]["use_g2p"] = override_useAnyG2P
# print(f'tp_codes[code]["use_epitran"], {tp_codes[code]["use_epitran"]}')
tp = tp_codes[code]["tp"](base_dir, logger=logger, use_g2p=use_g2p, use_epitran=tp_codes[code]["use_epitran"] if "use_epitran" in tp_codes[code].keys() else None)
for builtin_dict in tp_codes[code]["dicts"]:
tp.load_dict(builtin_dict)
for custom_dict in tp_codes[code]["custom_dicts"]:
tp.load_dict(custom_dict, isCustom=True)
if len(tp_codes[code]["g2p_cache"]):
tp.load_g2p_cache(tp_codes[code]["g2p_cache"][0])
return tp
if __name__ == '__main__':
import os
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
# tp = RomanianTextPreprocessor(base_dir)
# tp = ItalianTextPreprocessor(base_dir)
# tp = GermanTextPreprocessor(base_dir)
# tp = FrenchTextPreprocessor(base_dir)
# tp = ArabicTextPreprocessor(base_dir)
tp = get_text_preprocessor("jp", base_dir)
# line = "Un test la 10 cuvinte"
# line = "ein Testsatz mit 10 Wörtern"
# line = "une phrase test de 10 mots"
# line = "جملة اختبارية من 10 كلمات"
# line = "かな漢字"
# line = "10語の日本語文"
# line = "aa a a "
# line = "aa a baal rebb ceeb sàcc "
line = "これしきで戦闘不能か…ひ弱なものだな。"
# line = "これしきで せんとうふのう か…ひ じゃく なものだな。"
line = "これ式で戦闘不能か費はなものだな."
line = "これ しき で せんとうふのう か ひ はなものだな."
# tp.espeak
# print(f'tp.espeak, {tp.espeak}')
# print(f'tp.espeak, {tp.espeak.supported_languages(base_dir)}')
# # {'af': 'afrikaans-mbrola-1', 'am': 'Amharic', 'an': 'Aragonese', 'ar': 'Arabic', 'as': 'Assamese', 'az': 'Azerbaijani', 'ba': 'Bashkir', 'be': 'Belarusian', 'bg': 'Bulgarian', 'bn': 'Bengali', 'bpy': 'Bishnupriya_Manipuri', 'bs': 'Bosnian', 'ca': 'Catalan', 'chr-US-Qaaa-x-west': 'Cherokee_', 'cmn': 'Chinese_(Mandarin,_latin_as_English)', 'cmn-latn-pinyin': 'Chinese_(Mandarin,_latin_as_Pinyin)', 'cs': 'Czech', 'cv': 'Chuvash', 'cy': 'Welsh', 'da': 'Danish', 'de': 'german-mbrola-8', 'el': 'greek-mbrola-1', 'en': 'en-swedish', 'en-029': 'English_(Caribbean)', 'en-gb': 'English_(Great_Britain)', 'en-gb-scotland': 'English_(Scotland)', 'en-gb-x-gbclan': 'English_(Lancaster)', 'en-gb-x-gbcwmd': 'English_(West_Midlands)', 'en-gb-x-rp': 'English_(Received_Pronunciation)', 'en-uk': 'english-mb-en1', 'en-us': 'us-mbrola-3', 'en-us-nyc': 'English_(America,_New_York_City)', 'eo': 'Esperanto', 'es': 'Spanish_(Spain)', 'es-419': 'Spanish_(Latin_America)', 'es-es': 'spanish-mbrola-2', 'es-mx': 'mexican-mbrola-2', 'es-vz': 'venezuala-mbrola-1', 'et': 'estonian-mbrola-1', 'eu': 'Basque', 'fa': 'persian-mb-ir1', 'fa-latn': 'Persian_(Pinglish)', 'fi': 'Finnish', 'fr': 'french-mbrola-7', 'fr-be': 'french-mbrola-5', 'fr-ca': 'fr-canadian-mbrola-2', 'fr-ch': 'French_(Switzerland)', 'fr-fr': 'french-mbrola-6', 'ga': 'Gaelic_(Irish)', 'gd': 'Gaelic_(Scottish)', 'gn': 'Guarani', 'grc': 'german-mbrola-6', 'gu': 'Gujarati', 'hak': 'Hakka_Chinese', 'haw': 'Hawaiian', 'he': 'hebrew-mbrola-2', 'hi': 'Hindi', 'hr': 'croatian-mbrola-1', 'ht': 'Haitian_Creole', 'hu': 'hungarian-mbrola-1', 'hy': 'Armenian_(East_Armenia)', 'hyw': 'Armenian_(West_Armenia)', 'ia': 'Interlingua', 'id': 'indonesian-mbrola-1', 'io': 'Ido', 'is': 'icelandic-mbrola-1', 'it': 'italian-mbrola-2', 'ja': 'Japanese', 'jbo': 'Lojban', 'ka': 'Georgian', 'kk': 'Kazakh', 'kl': 'Greenlandic', 'kn': 'Kannada', 'ko': 'Korean', 'kok': 'Konkani', 'ku': 'Kurdish', 'ky': 'Kyrgyz', 'la': 'latin-mbrola-1', 'lb': 'Luxembourgish', 'lfn': 'Lingua_Franca_Nova', 'lt': 'lithuanian-mbrola-2', 'ltg': 'Latgalian', 'lv': 'Latvian', 'mi': 'maori-mbrola-1', 'mk': 'Macedonian', 'ml': 'Malayalam', 'mr': 'Marathi', 'ms': 'Malay', 'mt': 'Maltese', 'my': 'Myanmar_(Burmese)', 'nb': 'Norwegian_Bokmål', 'nci': 'Nahuatl_(Classical)', 'ne': 'Nepali', 'nl': 'dutch-mbrola-3', 'nog': 'Nogai', 'om': 'Oromo', 'or': 'Oriya', 'pa': 'Punjabi', 'pap': 'Papiamento', 'piqd': 'Klingon', 'pl': 'polish-mbrola-1', 'pt': 'Portuguese_(Portugal)', 'pt-br': 'brazil-mbrola-4', 'pt-pt': 'portugal-mbrola-1', 'py': 'Pyash', 'qdb': 'Lang_Belta', 'qu': 'Quechua', 'quc': "K'iche'", 'qya': 'Quenya', 'ro': 'romanian-mbrola-1', 'ru': 'Russian', 'ru-lv': 'Russian_(Latvia)', 'sd': 'Sindhi', 'shn': 'Shan_(Tai_Yai)', 'si': 'Sinhala', 'sjn': 'Sindarin', 'sk': 'Slovak', 'sl': 'Slovenian', 'smj': 'Lule_Saami', 'sq': 'Albanian', 'sr': 'Serbian', 'sv': 'swedish-mbrola-2', 'sw': 'Swahili', 'ta': 'Tamil', 'te': 'telugu-mbrola-1', 'th': 'Thai', 'tk': 'Turkmen', 'tn': 'Setswana', 'tr': 'turkish-mbrola-1', 'tt': 'Tatar', 'ug': 'Uyghur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vi': 'Vietnamese_(Northern)', 'vi-vn-x-central': 'Vietnamese_(Central)', 'vi-vn-x-south': 'Vietnamese_(Southern)', 'yue': 'Chinese_(Cantonese,_latin_as_Jyutping)', 'zh': 'chinese-mb-cn1'}
# fdfgd()
# kks = pykakasi.kakasi()
# line = kks.convert(line)
# line = " ".join([part["hira"] for part in line])
print(f'line, {line}')
print(f'Line: |{line}|')
phonemes = tp.text_to_phonemes(line)
print(f'xVAARPAbet: |{phonemes}|')
ssd()
if __name__ == '__main__':
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
tp = get_text_preprocessor("en", base_dir)
with open("F:/Speech/custom-arpabets/elderscrolls-missing-post.txt") as f:
words = f.read().split("\n")
metadata_out = ["game_id|voice_id|text,out_path"]
txt_out = []
for word in words:
if len(word.strip())>2:
phones = tp.text_to_phonemes(word)
print(f'word, {word}')
print(f'phones, {phones}')
metadata_out.append(f'skyrim|sk_femaleeventoned|This is what '+"{" + phones +"}"+f' sounds like.|./{word}.wav')
txt_out.append(f'{word}|{phones}')
with open(f'./g2p_batch.csv', "w+") as f:
f.write("\n".join(metadata_out))
with open(f'./txt_out.csv', "w+") as f:
f.write("\n".join(txt_out))
fddfg()
if __name__ == '__main__':
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
# tp = get_text_preprocessor("th", base_dir)
# tp = get_text_preprocessor("mn", base_dir)
tp = get_text_preprocessor("wo", base_dir)
# print(tp.text_to_phonemes("นี่คือประโยคภาษาไทยที่พูดโดย xVASynth ประมาณนี้ค่ะ"))
# print(tp.text_to_phonemes("Энэ бол {EH1 G S V EY0 EY0 IH0 S IH0 N TH}-ийн ярьдаг монгол хэл дээрх өгүүлбэр юм. "))
print(tp.text_to_phonemes(" Kii est ab baat ci wolof, janga par xvasynth "))
fddfg()
if __name__ == '__main__':
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
tp = get_text_preprocessor("ha", base_dir)
print(tp.text_to_phonemes("Wannan jimla ce a cikin hausa, xVASynth ta yi magana "))
fddfg()
# if __name__ == '__main__':
if False:
print("Mass pre-caching g2p")
def get_datasets (root_f):
data_folders = os.listdir(root_f)
data_folders = [f'{root_f}/{dataset_folder}' for dataset_folder in sorted(data_folders) if not dataset_folder.startswith("_") and "." not in dataset_folder]
return data_folders
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
# all_data_folders = get_datasets(f'D:/xVASpeech/DATASETS')+get_datasets(f'D:/xVASpeech/GAME_DATA')
all_data_folders = get_datasets(f'D:/xVASpeech/GAME_DATA')
for dfi,dataset_folder in enumerate(all_data_folders):
lang = dataset_folder.split("/")[-1].split("_")[0]
if "de_f4" in dataset_folder:
continue
# if lang not in ["zh"]:
# continue
# if lang in ["am", "sw"]:
# continue # Skip currently running training
tp = get_text_preprocessor(lang, base_dir)
with open(f'{dataset_folder}/metadata.csv') as f:
lines = f.read().split("\n")
for li,line in enumerate(lines):
print(f'\r{dfi+1}/{len(all_data_folders)} | {li+1}/{len(lines)} | {dataset_folder} ', end="", flush=True)
if "|" in line:
text = line.split("|")[1]
if len(text):
tp.text_to_phonemes(text)
print("")
fsdf()
# kks = pykakasi.kakasi()
# pron_dict = {}
# # with open(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/dicts/japanese.txt') as f:
# with open(f'F:/Speech/xVA-Synth/python/xvapitch/text/dicts/japanese.txt') as f:
# lines = f.read().split("\n")
# for li,line in enumerate(lines):
# print(f'\r{li+1}/{len(lines)}', end="", flush=True)
# if len(line.strip()):
# word = line.split(" ")[0]
# phon = " ".join(line.split(" ")[1:])
# word = kks.convert(word)
# word = "".join([part["hira"] for part in word])
# # word = word.replace(" ", "").replace(" ", "")
# pron_dict[word] = phon
# csv_out = []
# for key in pron_dict.keys():
# csv_out.append(f'{key} {pron_dict[key]}')
# with open(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/dicts/japanese_h.txt', "w+") as f:
# f.write("\n".join(csv_out))
if False:
tp = ChineseTextPreprocessor(base_dir)
# tp.load_g2p_cache(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/g2p_cache/g2pc_cache_zh.txt')
line = "你好。 这就是 xVASynth 声音的样子。"
line = "遛弯儿都得躲远点。"
# line = "Nǐ hǎo"
# line = "Zhè shì yīgè jiào zhǎng de jùzi. Wǒ xīwàng tā shì zhèngquè de, yīnwèi wǒ zhèngzài shǐyòng gǔgē fānyì tā"
# phones = tp.text_to_phonemes(line)
# print(f'phones, |{phones}|')
phones = tp.text_to_sequence(line)
print(f'phones, |{phones[1]}|')
print("start setup...")
text = []
# text.append("nords")
# text.append("I read the book... It was a good book to read?{T EH S T}! Test dovahkiin word")
# text.append(" I read the book... It was a good book to read?{T EH S T}! Test dovahkiin word")
# text.append("{AY1 } read the book... It was a good book to read?{T EH S T}! Test 1 dovahkiin word")
text.append(" {AY1 } read the book... It was a good book to read?{T EH S T}! Test 1 dovahkiin word ")
# text.append("the scaffold hung with black; and the inhabitants of the neighborhood, having petitioned the sheriffs to remove the scene of execution to the old place,")
text.append("oxenfurt")
text.append("atomatoys")
import os
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
print(f'base_dir, {base_dir}')
tp = EnglishTextPreprocessor(base_dir)
tp.load_dict(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/dicts/cmudict.txt')
tp.load_dict(f'F:/Speech/xVA-Synth/arpabet/xvadict-elder_scrolls.json', isCustom=True)
# tp.load_g2p_cache(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/g2p_cache/espeak/espeak_cache_en.txt')
print("start inferring...")
for line in text:
print(f'Line: |{line}|')
phonemes = tp.text_to_phonemes(line)
print(f'xVAARPAbet: |{phonemes}|')
# TODO
# - Add the POS, and extra cleaning stuff
|