Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 37,750 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
import os
import re
import json
import codecs
import ffmpeg
import argparse
import platform
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.utils.rnn import pad_sequence
import scipy
import scipy.io.wavfile
import librosa
from scipy.io.wavfile import write
import numpy as np
try:
import sys
sys.path.append(".")
from resources.app.python.xvapitch.text import ALL_SYMBOLS, get_text_preprocessor, lang_names
from resources.app.python.xvapitch.xvapitch_model import xVAPitch as xVAPitchModel
except ModuleNotFoundError:
try:
from python.xvapitch.text import ALL_SYMBOLS, get_text_preprocessor, lang_names
from python.xvapitch.xvapitch_model import xVAPitch as xVAPitchModel
except ModuleNotFoundError:
try:
from xvapitch.text import ALL_SYMBOLS, get_text_preprocessor, lang_names
from xvapitch.xvapitch_model import xVAPitch as xVAPitchModel
except ModuleNotFoundError:
from text import ALL_SYMBOLS, get_text_preprocessor, lang_names
from xvapitch_model import xVAPitch as xVAPitchModel
class xVAPitch(object):
def __init__(self, logger, PROD, device, models_manager):
super(xVAPitch, self).__init__()
self.logger = logger
self.PROD = PROD
self.models_manager = models_manager
self.device = device
self.ckpt_path = None
self.arpabet_dict = {}
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.benchmark = False
self.base_dir = f'{"./resources/app" if self.PROD else "."}/python/xvapitch/text'
self.lang_tp = {}
self.lang_tp["en"] = get_text_preprocessor("en", self.base_dir, logger=self.logger)
self.language_id_mapping = {name: i for i, name in enumerate(sorted(list(lang_names.keys())))}
self.pitch_emb_values = torch.tensor(np.load(f'{"./resources/app" if self.PROD else "."}/python/xvapitch/embs/pitch_emb.npy')).unsqueeze(0).unsqueeze(-1)
self.angry_emb_values = torch.tensor(np.load(f'{"./resources/app" if self.PROD else "."}/python/xvapitch/embs/angry.npy')).unsqueeze(0).unsqueeze(-1)
self.happy_emb_values = torch.tensor(np.load(f'{"./resources/app" if self.PROD else "."}/python/xvapitch/embs/happy.npy')).unsqueeze(0).unsqueeze(-1)
self.sad_emb_values = torch.tensor(np.load(f'{"./resources/app" if self.PROD else "."}/python/xvapitch/embs/sad.npy')).unsqueeze(0).unsqueeze(-1)
self.surprise_emb_values = torch.tensor(np.load(f'{"./resources/app" if self.PROD else "."}/python/xvapitch/embs/surprise.npy')).unsqueeze(0).unsqueeze(-1)
self.base_lang = "en"
self.init_model()
self.model.pitch_emb_values = self.pitch_emb_values.to(self.models_manager.device)
self.model.angry_emb_values = self.angry_emb_values.to(self.models_manager.device)
self.model.happy_emb_values = self.happy_emb_values.to(self.models_manager.device)
self.model.sad_emb_values = self.sad_emb_values.to(self.models_manager.device)
self.model.surprise_emb_values = self.surprise_emb_values.to(self.models_manager.device)
self.isReady = True
def init_model (self):
parser = argparse.ArgumentParser()
args = parser.parse_args()
# Params from training
args.pitch = 1
args.pe_scaling = 0.1
args.expanded_flow = 0
args.ow_flow = 0
args.energy = 0
self.model = xVAPitchModel(args).to(self.device)
self.model.eval()
self.model.device = self.device
def load_state_dict (self, ckpt_path, ckpt, n_speakers=1, base_lang="en"):
self.logger.info(f'load_state_dict base_lang: {base_lang}')
if base_lang not in self.lang_tp.keys():
self.lang_tp[base_lang] = get_text_preprocessor(base_lang, self.base_dir, logger=self.logger)
self.base_lang = base_lang
self.ckpt_path = ckpt_path
if os.path.exists(ckpt_path.replace(".pt", ".json")):
with open(ckpt_path.replace(".pt", ".json"), "r") as f:
data = json.load(f)
self.base_emb = data["games"][0]["base_speaker_emb"]
if 'model' in ckpt:
ckpt = ckpt['model']
if ckpt["emb_l.weight"].shape[0]==31:
self.model.emb_l = nn.Embedding(31, self.model.embedded_language_dim).to(self.models_manager.device)
elif ckpt["emb_l.weight"].shape[0]==50:
num_languages = 50
self.model.emb_l = nn.Embedding(num_languages, self.model.embedded_language_dim).to(self.models_manager.device)
self.model.load_state_dict(ckpt, strict=False)
self.model = self.model.float()
self.model.eval()
def init_arpabet_dicts (self):
if len(list(self.arpabet_dict.keys()))==0:
self.refresh_arpabet_dicts()
def refresh_arpabet_dicts (self):
self.arpabet_dict = {}
json_files = sorted(os.listdir(f'{"./resources/app" if self.PROD else "."}/arpabet'))
json_files = [fname for fname in json_files if fname.endswith(".json")]
for fname in json_files:
with codecs.open(f'{"./resources/app" if self.PROD else "."}/arpabet/{fname}', encoding="utf-8") as f:
json_data = json.load(f)
for word in list(json_data["data"].keys()):
if json_data["data"][word]["enabled"]==True:
self.arpabet_dict[word] = json_data["data"][word]["arpabet"]
def run_speech_to_speech (self, audiopath, audio_out_path, style_emb, models_manager, plugin_manager, vc_strength=1, useSR=False, useCleanup=False):
if ".wav" in style_emb:
self.logger.info(f'Getting style emb from: {style_emb}')
style_emb = models_manager.models("speaker_rep").compute_embedding(style_emb).squeeze()
else:
self.logger.info(f'Given style emb')
style_emb = torch.tensor(style_emb).squeeze()
try:
content_emb = models_manager.models("speaker_rep").compute_embedding(audiopath).squeeze()
except:
return "TOO_SHORT"
style_emb = F.normalize(style_emb.unsqueeze(0), dim=1).unsqueeze(-1).to(self.models_manager.device)
content_emb = F.normalize(content_emb.unsqueeze(0), dim=1).unsqueeze(-1).to(self.models_manager.device)
content_emb = content_emb + (-(vc_strength-1) * (style_emb - content_emb))
y, sr = librosa.load(audiopath, sr=22050)
D = librosa.stft(
y=y,
n_fft=1024,
hop_length=256,
win_length=1024,
pad_mode="reflect",
window="hann",
center=True,
)
spec = np.abs(D).astype(np.float32)
ref_spectrogram = torch.FloatTensor(spec).unsqueeze(0)
y_lengths = torch.tensor([ref_spectrogram.size(-1)]).to(self.models_manager.device)
y = ref_spectrogram.to(self.models_manager.device)
wav = self.model.voice_conversion(y=y, y_lengths=y_lengths, spk1_emb=content_emb, spk2_emb=style_emb)
wav = wav.squeeze().cpu().detach().numpy()
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
if useCleanup:
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
scipy.io.wavfile.write(audio_out_path.replace(".wav", "_preSR.wav"), 22050, wav_norm.astype(np.int16))
else:
scipy.io.wavfile.write(audio_out_path.replace(".wav", "_preCleanupPreFFmpeg.wav"), 22050, wav_norm.astype(np.int16))
stream = ffmpeg.input(audio_out_path.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = audio_out_path.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(audio_out_path.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
scipy.io.wavfile.write(audio_out_path.replace(".wav", "_preSR.wav") if useSR else audio_out_path, 22050, wav_norm.astype(np.int16))
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(audio_out_path.replace(".wav", "_preSR.wav"), audio_out_path.replace(".wav", "_preCleanup.wav") if useCleanup else audio_out_path)
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(audio_out_path.replace(".wav", "_preCleanup.wav"), audio_out_path)
return
def infer_batch(self, plugin_manager, linesBatch, outputJSON, vocoder, speaker_i, old_sequence=None, useSR=False, useCleanup=False):
print(f'Inferring batch of {len(linesBatch)} lines')
text_sequences = []
cleaned_text_sequences = []
lang_embs = []
speaker_embs = []
# [sequence, pitch, duration, pace, tempFileLocation, outPath, outFolder, pitch_amp, base_lang, base_emb, vc_content, vc_style]
vc_input = []
tts_input = []
for ri,record in enumerate(linesBatch):
if record[-2]: # If a VC content file has been given, handle this as VC
vc_input.append(record)
else:
tts_input.append(record)
# =================
# ======= Handle VC
# =================
if len(vc_input):
for ri,record in enumerate(vc_input):
content_emb = self.models_manager.models("speaker_rep").compute_embedding(record[-2]).squeeze()
style_emb = self.models_manager.models("speaker_rep").compute_embedding(record[-1]).squeeze()
# content_emb = F.normalize(content_emb.unsqueeze(0), dim=1).squeeze(0)
# style_emb = F.normalize(style_emb.unsqueeze(0), dim=1).squeeze(0)
content_emb = content_emb.unsqueeze(0).unsqueeze(-1).to(self.models_manager.device)
style_emb = style_emb.unsqueeze(0).unsqueeze(-1).to(self.models_manager.device)
y, sr = librosa.load(record[-2], sr=22050)
D = librosa.stft(
y=y,
n_fft=1024,
hop_length=256,
win_length=1024,
pad_mode="reflect",
window="hann",
center=True,
)
spec = np.abs(D).astype(np.float32)
ref_spectrogram = torch.FloatTensor(spec).unsqueeze(0)
y_lengths = torch.tensor([ref_spectrogram.size(-1)]).to(self.models_manager.device)
y = ref_spectrogram.to(self.models_manager.device)
# Run Voice Conversion
self.model.logger = self.logger
wav = self.model.voice_conversion(y=y, y_lengths=y_lengths, spk1_emb=content_emb, spk2_emb=style_emb)
wav = wav.squeeze().cpu().detach().numpy()
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
if useCleanup:
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
scipy.io.wavfile.write(tts_input[ri][4].replace(".wav", "_preSR.wav"), 22050, wav_norm.astype(np.int16))
else:
scipy.io.wavfile.write(tts_input[ri][4].replace(".wav", "_preCleanupPreFFmpeg.wav"), 22050, wav_norm.astype(np.int16))
stream = ffmpeg.input(tts_input[ri][4].replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = tts_input[ri][4].replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(tts_input[ri][4].replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
scipy.io.wavfile.write(vc_input[ri][4].replace(".wav", "_preSR.wav") if useSR else vc_input[ri][4], 22050, wav_norm.astype(np.int16))
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(vc_input[ri][4].replace(".wav", "_preSR.wav"), vc_input[ri][4].replace(".wav", "_preCleanup.wav") if useCleanup else vc_input[ri][4])
os.remove(vc_input[ri][4].replace(".wav", "_preSR.wav"))
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(vc_input[ri][4].replace(".wav", "_preCleanup.wav"), vc_input[ri][4])
os.remove(vc_input[ri][4].replace(".wav", "_preCleanup.wav"))
# ==================
# ======= Handle TTS
# ==================
if len(tts_input):
lang_embs_sizes = []
for ri,record in enumerate(tts_input):
# Pre-process text
text = record[0].replace("/lang", "\\lang")
base_lang = record[-4]
self.logger.info(f'[infer_batch] text: {text}')
sequenceSplitByLanguage = self.preprocess_prompt_language(text, base_lang)
# Make sure all languages' text processors are initialized
for subSequence in sequenceSplitByLanguage:
langCode = list(subSequence.keys())[0]
if langCode not in self.lang_tp.keys():
self.lang_tp[langCode] = get_text_preprocessor(langCode, self.base_dir, logger=self.logger)
try:
pad_symb = len(ALL_SYMBOLS)-2
all_sequence = []
all_cleaned_text = []
all_text = []
all_lang_ids = []
# Collapse same-language words into phrases, so that heteronyms can still be detected
sequenceSplitByLanguage_grouped = []
last_lang_group = None
group = ""
for ssi, subSequence in enumerate(sequenceSplitByLanguage):
if list(subSequence.keys())[0]!=last_lang_group:
if last_lang_group is not None:
sequenceSplitByLanguage_grouped.append({last_lang_group: group})
group = ""
last_lang_group = list(subSequence.keys())[0]
group += subSequence[last_lang_group]
if len(group):
sequenceSplitByLanguage_grouped.append({last_lang_group: group})
for ssi, subSequence in enumerate(sequenceSplitByLanguage_grouped):
langCode = list(subSequence.keys())[0]
subSeq = subSequence[langCode]
sequence, cleaned_text = self.lang_tp[langCode].text_to_sequence(subSeq)
if ssi<len(sequenceSplitByLanguage_grouped)-1:
sequence = sequence + [pad_symb]
all_sequence.append(sequence)
all_cleaned_text += ("|"+cleaned_text) if len(all_cleaned_text) else cleaned_text
if ssi<len(sequenceSplitByLanguage_grouped)-1:
all_cleaned_text = all_cleaned_text + ["|<PAD>"]
all_text.append(torch.LongTensor(sequence))
language_id = self.language_id_mapping[langCode]
all_lang_ids += [language_id for _ in range(len(sequence))]
except ValueError as e:
self.logger.info("====")
self.logger.info(str(e))
self.logger.info("====--")
if "not in list" in str(e):
symbol_not_in_list = str(e).split("is not in list")[0].split("ValueError:")[-1].replace("'", "").strip()
return f'ERR: ARPABET_NOT_IN_LIST: {symbol_not_in_list}'
all_cleaned_text = "".join(all_cleaned_text)
text = torch.cat(all_text, dim=0)
cleaned_text_sequences.append(all_cleaned_text)
text = torch.LongTensor(text)
text_sequences.append(text)
lang_ids = torch.tensor(all_lang_ids).to(self.models_manager.device)
lang_embs.append(lang_ids)
lang_embs_sizes.append(lang_ids.shape[0])
speaker_embs.append(torch.tensor(tts_input[ri][-3]).unsqueeze(-1))
lang_embs = pad_sequence(lang_embs, batch_first=True).to(self.models_manager.device)
text_sequences = pad_sequence(text_sequences, batch_first=True).to(self.models_manager.device)
speaker_embs = pad_sequence(speaker_embs, batch_first=True).to(self.models_manager.device)
pace = torch.tensor([record[3] for record in tts_input]).unsqueeze(1).to(self.device)
pitch_amp = torch.tensor([record[7] for record in tts_input]).unsqueeze(1).to(self.device)
# Could pass indexes (and get them returned) to the tts inference fn
# Do the same to the vc infer fn
# Then marge them into their place in an output array?
out = self.model.infer_advanced(self.logger, plugin_manager, [cleaned_text_sequences], text_sequences, lang_embs=lang_embs, speaker_embs=speaker_embs, pace=pace, old_sequence=None, pitch_amp=pitch_amp)
if isinstance(out, str):
return out
else:
output_wav, dur_pred, pitch_pred, energy_pred, _, _, _, _ = out
for i,wav in enumerate(output_wav):
wav = wav.squeeze().cpu().detach().numpy()
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
if useCleanup:
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
scipy.io.wavfile.write(tts_input[i][4].replace(".wav", "_preSR.wav"), 22050, wav_norm.astype(np.int16))
else:
scipy.io.wavfile.write(tts_input[i][4].replace(".wav", "_preCleanupPreFFmpeg.wav"), 22050, wav_norm.astype(np.int16))
stream = ffmpeg.input(tts_input[i][4].replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = tts_input[i][4].replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(tts_input[i][4].replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
scipy.io.wavfile.write(tts_input[i][4].replace(".wav", "_preSR.wav") if useSR else tts_input[i][4], 22050, wav_norm.astype(np.int16))
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(tts_input[i][4].replace(".wav", "_preSR.wav"), tts_input[i][4].replace(".wav", "_preCleanup.wav") if useCleanup else tts_input[i][4])
os.remove(tts_input[i][4].replace(".wav", "_preSR.wav"))
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(tts_input[i][4].replace(".wav", "_preCleanup.wav"), tts_input[i][4])
os.remove(tts_input[i][4].replace(".wav", "_preCleanup.wav"))
if outputJSON:
for ri, record in enumerate(tts_input):
# tts_input: sequence, pitch, duration, pace, tempFileLocation, outPath, outFolder
output_fname = tts_input[ri][5].replace(".wav", ".json")
containing_folder = "/".join(output_fname.split("/")[:-1])
os.makedirs(containing_folder, exist_ok=True)
with open(output_fname, "w+") as f:
data = {}
data["modelType"] = "xVAPitch"
data["inputSequence"] = str(tts_input[ri][0])
data["pacing"] = float(tts_input[ri][3])
data["letters"] = [char.replace("{", "").replace("}", "") for char in list(cleaned_text_sequences[ri].split("|"))]
data["currentVoice"] = self.ckpt_path.split("/")[-1].replace(".pt", "")
# data["resetEnergy"] = [float(val) for val in list(energy_pred[ri].cpu().detach().numpy())]
data["resetEnergy"] = [float(1) for val in list(pitch_pred[ri][0].cpu().detach().numpy())]
data["resetPitch"] = [float(val) for val in list(pitch_pred[ri][0].cpu().detach().numpy())]
data["resetDurs"] = [float(val) for val in list(dur_pred[ri][0].cpu().detach().numpy())]
data["ampFlatCounter"] = 0
data["pitchNew"] = data["resetPitch"]
data["energyNew"] = data["resetEnergy"]
data["dursNew"] = data["resetDurs"]
f.write(json.dumps(data, indent=4))
return ""
# Split words by space, while also breaking out the \land[code][text] formatting
def splitWords (self, sequence, addSpace=False):
words = []
for word in sequence:
if word.startswith("\\lang["):
words.append(word.split("][")[0]+"][")
word = word.split("][")[1]
for char in ["}","]","[","{"]:
if word.startswith(char):
words.append(char)
word = word[1:]
end_extras = []
for char in ["}","]","[","{"]:
if word.endswith(char):
end_extras.append(char)
word = word[:-1]
words.append(word)
end_extras.reverse()
for extra in end_extras:
words.append(extra)
if addSpace:
words.append(" ")
return words
def preprocess_prompt_language (self, sequence, base_lang):
# Separate the ARPAbet brackets from punctuation
sequence = sequence.replace("}.", "} .")
sequence = sequence.replace("}!", "} !")
sequence = sequence.replace("}?", "} ?")
sequence = sequence.replace("},", "} ,")
sequence = sequence.replace("}\"", "} \"")
sequence = sequence.replace("}'", "} '")
sequence = sequence.replace("}-", "} -")
sequence = sequence.replace("})", "} )")
sequence = sequence.replace(".{", ". {")
sequence = sequence.replace("!{", "! {")
sequence = sequence.replace("?{", "? {")
sequence = sequence.replace(",{", ", {")
sequence = sequence.replace("\"{", "\" {")
sequence = sequence.replace("'{", "' {")
sequence = sequence.replace("-{", "- {")
sequence = sequence.replace("({", "( {")
# Prepare the input sequence for processing. Do a few times to catch edge cases
sequence = self.splitWords(sequence.split(" "), True)
sequence = self.splitWords(sequence)
sequence = self.splitWords(sequence)
sequence = self.splitWords(sequence)
subSequences = []
openedLangs = 0
langs_stack = [base_lang]
for word in sequence:
skip_word = False
if word.startswith("\\lang["):
openedLangs += 1
langs_stack.append(word.split("lang[")[1].split("]")[0])
skip_word = True
if word.endswith("]"):
openedLangs -= 1
langs_stack.pop()
skip_word = True
# Add the word to the list if not skipping it, if it's not empty, or it's not a second space in a row
if not skip_word and len(word) and (word!=" " or len(subSequences)==0 or subSequences[-1][list(subSequences[-1].keys())[0]]!=" "):
subSequences.append({langs_stack[-1]: word})
subSequences_collapsed = []
current_open_arpabet = []
last_lang = None
is_in_arpabet = False
# Collapse groups of inlined ARPABet symbols, to have them treated as such
for subSequence in subSequences:
ss_lang = list(subSequence.keys())[0]
ss_val = subSequence[ss_lang]
if ss_lang is not last_lang:
if len(current_open_arpabet):
subSequences_collapsed.append({ss_lang: "{"+" ".join(current_open_arpabet).replace(" "," ")+"}"})
current_open_arpabet = []
last_lang = ss_lang
if ss_val.strip()=="{":
is_in_arpabet = True
elif ss_val.strip()=="}":
subSequences_collapsed.append({ss_lang: "{"+" ".join(current_open_arpabet).replace(" "," ")+"}"})
current_open_arpabet = []
is_in_arpabet = False
else:
if is_in_arpabet:
current_open_arpabet.append(ss_val)
else:
subSequences_collapsed.append({ss_lang: ss_val})
return subSequences_collapsed
def getG2P (self, text, base_lang):
sequenceSplitByLanguage = self.preprocess_prompt_language(text, base_lang)
# Make sure all languages' text processors are initialized
for subSequence in sequenceSplitByLanguage:
langCode = list(subSequence.keys())[0]
if langCode not in self.lang_tp.keys():
self.lang_tp[langCode] = get_text_preprocessor(langCode, self.base_dir, logger=self.logger)
returnString = "{"
langs_stack = [base_lang]
last_lang = base_lang
for subSequence in sequenceSplitByLanguage:
langCode = list(subSequence.keys())[0]
subSeq = subSequence[langCode]
sequence, cleaned_text = self.lang_tp[langCode].text_to_sequence(subSeq)
if langCode != last_lang:
last_lang = langCode
if len(langs_stack)>1 and langs_stack[-2]==langCode:
langs_stack.pop()
if returnString[-1]=="}":
returnString = returnString[:-1]
returnString += "]}"
else:
langs_stack.append(langCode)
if returnString[-1]=="{":
returnString = returnString[:-1]
returnString += f'\\lang[{langCode}][' + "{"
returnString += " ".join([symb for symb in cleaned_text.split("|") if symb != "<PAD>"]).replace("_", "} {")
if returnString[-1]=="{":
returnString = returnString[:-1]
else:
returnString = returnString+"}"
returnString = returnString.replace(".}", "}.")
returnString = returnString.replace(",}", "},")
returnString = returnString.replace("!}", "}!")
returnString = returnString.replace("?}", "}?")
returnString = returnString.replace("]}", "}]")
returnString = returnString.replace("}]}", "}]")
returnString = returnString.replace("{"+"}", "")
returnString = returnString.replace("}"+"}", "}")
returnString = returnString.replace("{"+"{", "{")
return returnString
def infer(self, plugin_manager, text, out_path, vocoder, speaker_i, pace=1.0, editor_data=None, old_sequence=None, globalAmplitudeModifier=None, base_lang="en", base_emb=None, useSR=False, useCleanup=False):
sequenceSplitByLanguage = self.preprocess_prompt_language(text, base_lang)
# Make sure all languages' text processors are initialized
for subSequence in sequenceSplitByLanguage:
langCode = list(subSequence.keys())[0]
if langCode not in self.lang_tp.keys():
self.lang_tp[langCode] = get_text_preprocessor(langCode, self.base_dir, logger=self.logger)
try:
pad_symb = len(ALL_SYMBOLS)-2
all_sequence = []
all_cleaned_text = []
all_text = []
all_lang_ids = []
# Collapse same-language words into phrases, so that heteronyms can still be detected
sequenceSplitByLanguage_grouped = []
last_lang_group = None
group = ""
for ssi, subSequence in enumerate(sequenceSplitByLanguage):
if list(subSequence.keys())[0]!=last_lang_group:
if last_lang_group is not None:
sequenceSplitByLanguage_grouped.append({last_lang_group: group})
group = ""
last_lang_group = list(subSequence.keys())[0]
group += subSequence[last_lang_group]
if len(group):
sequenceSplitByLanguage_grouped.append({last_lang_group: group})
for ssi, subSequence in enumerate(sequenceSplitByLanguage_grouped):
langCode = list(subSequence.keys())[0]
subSeq = subSequence[langCode]
sequence, cleaned_text = self.lang_tp[langCode].text_to_sequence(subSeq)
if ssi<len(sequenceSplitByLanguage_grouped)-1:
sequence = sequence + [pad_symb]
all_sequence.append(sequence)
all_cleaned_text += ("|"+cleaned_text) if len(all_cleaned_text) else cleaned_text
if ssi<len(sequenceSplitByLanguage_grouped)-1:
all_cleaned_text = all_cleaned_text + ["|<PAD>"]
all_text.append(torch.LongTensor(sequence))
language_id = self.language_id_mapping[langCode]
all_lang_ids += [language_id for _ in range(len(sequence))]
except ValueError as e:
self.logger.info("====")
self.logger.info(str(e))
self.logger.info("====--")
if "not in list" in str(e):
symbol_not_in_list = str(e).split("is not in list")[0].split("ValueError:")[-1].replace("'", "").strip()
return f'ERR: ARPABET_NOT_IN_LIST: {symbol_not_in_list}'
all_cleaned_text = "".join(all_cleaned_text)
text = torch.cat(all_text, dim=0)
text = pad_sequence([text], batch_first=True).to(self.models_manager.device)
with torch.no_grad():
if old_sequence is not None:
old_sequence = re.sub(r'[^a-zA-Z\s\(\)\[\]0-9\?\.\,\!\'\{\}\_\@]+', '', old_sequence)
old_sequence, clean_old_sequence = self.lang_tp[base_lang].text_to_sequence(old_sequence)#, "english_basic", ['english_cleaners'])
old_sequence = torch.LongTensor(old_sequence)
old_sequence = pad_sequence([old_sequence], batch_first=True).to(self.models_manager.device)
lang_ids = torch.tensor(all_lang_ids).to(self.models_manager.device)
num_embs = text.shape[1]
base_emb = [float(val) for val in base_emb.split(",")] if "," in base_emb else self.base_emb
speaker_embs = [torch.tensor(base_emb).unsqueeze(dim=0)[0].unsqueeze(-1)]
speaker_embs = torch.stack(speaker_embs, dim=0).to(self.models_manager.device)#.unsqueeze(-1)
speaker_embs = speaker_embs.repeat(1,1,num_embs)
# Do interpolations of speaker style embeddings
if editor_data is not None:
editorStyles = editor_data[-1]
if editorStyles is not None:
style_keys = list(editorStyles.keys())
for style_key in style_keys:
emb = editorStyles[style_key]["embedding"]
sliders_vals = editorStyles[style_key]["sliders"]
style_embs = [torch.tensor(emb).unsqueeze(dim=0)[0].unsqueeze(-1)]
style_embs = torch.stack(style_embs, dim=0).to(self.models_manager.device)#.unsqueeze(-1)
style_embs = style_embs.repeat(1,1,num_embs)
sliders_vals = torch.tensor(sliders_vals).to(self.models_manager.device)
speaker_embs = speaker_embs*(1-sliders_vals) + sliders_vals*style_embs
speaker_embs = speaker_embs.float()
lang_embs = lang_ids # TODO, use pre-extracted trained language embeddings, for interpolation
out = self.model.infer_advanced(self.logger, plugin_manager, [all_cleaned_text], text, lang_embs=lang_embs, speaker_embs=speaker_embs, pace=pace, editor_data=editor_data, old_sequence=old_sequence)
if isinstance(out, str):
return f'ERR:{out}'
else:
output_wav, dur_pred, pitch_pred, energy_pred, em_pred, start_index, end_index, wav_mult = out
[em_angry_pred, em_happy_pred, em_sad_pred, em_surprise_pred] = em_pred
wav = output_wav.squeeze().cpu().detach().numpy()
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
if wav_mult is not None:
wav_norm = wav_norm * wav_mult
if useCleanup:
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
scipy.io.wavfile.write(out_path.replace(".wav", "_preSR.wav"), 22050, wav_norm.astype(np.int16))
else:
scipy.io.wavfile.write(out_path.replace(".wav", "_preCleanupPreFFmpeg.wav"), 22050, wav_norm.astype(np.int16))
stream = ffmpeg.input(out_path.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = out_path.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(out_path.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
scipy.io.wavfile.write(out_path.replace(".wav", "_preSR.wav") if useSR else out_path, 22050, wav_norm.astype(np.int16))
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(out_path.replace(".wav", "_preSR.wav"), out_path.replace(".wav", "_preCleanup.wav") if useCleanup else out_path)
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(out_path.replace(".wav", "_preCleanup.wav"), out_path)
[pitch, durations, energy, em_angry, em_happy, em_sad, em_surprise] = [
pitch_pred.squeeze().cpu().detach().numpy(),
dur_pred.squeeze().cpu().detach().numpy(),
energy_pred.cpu().detach().numpy() if energy_pred is not None else [],
em_angry_pred.squeeze().cpu().detach().numpy() if em_angry_pred is not None else [],
em_happy_pred.squeeze().cpu().detach().numpy() if em_happy_pred is not None else [],
em_sad_pred.squeeze().cpu().detach().numpy() if em_sad_pred is not None else [],
em_surprise_pred.squeeze().cpu().detach().numpy() if em_surprise_pred is not None else [],
]
editor_values_text = ",".join([str(v) for v in pitch]) + "\n" + \
",".join([str(v) for v in durations]) + "\n" + \
",".join([str(v) for v in energy]) + "\n" + \
",".join([str(v) for v in em_angry]) + "\n" + \
",".join([str(v) for v in em_happy]) + "\n" + \
",".join([str(v) for v in em_sad]) + "\n" + \
",".join([str(v) for v in em_surprise]) + "\n" + \
json.dumps(editorStyles)
del pitch_pred, dur_pred, energy_pred, em_angry, em_happy, em_sad, em_surprise, text, sequence
return editor_values_text +"\n"+all_cleaned_text +"\n"+ f'{start_index}\n{end_index}'
def set_device (self, device):
self.device = device
self.model = self.model.to(device)
self.model.pitch_emb_values = self.model.pitch_emb_values.to(device)
self.model.device = device
|