Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 33,497 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
import json
import random
import sys
from pathlib import Path
import torch
import numpy as np
from torch.nn import functional as F
# import cupy as cp
from numba import jit, prange
CYTHON = False
def maximum_path(value, mask, max_neg_val=None):
"""
Monotonic alignment search algorithm
Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
if max_neg_val is None:
max_neg_val = -np.inf # Patch for Sphinx complaint
value = value * mask
device = value.device
dtype = value.dtype
value = value.cpu().detach().numpy()
mask = mask.cpu().detach().numpy().astype(np.bool)
b, t_x, t_y = value.shape
direction = np.zeros(value.shape, dtype=np.int64)
v = np.zeros((b, t_x), dtype=np.float32)
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1)
for j in range(t_y):
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = v1 >= v0
v_max = np.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = x_range <= j
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = np.where(mask, direction, 1)
path = np.zeros(value.shape, dtype=np.float32)
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
index_range = np.arange(b)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(np.float32)
path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
@jit(parallel=True)
def maximum_path_numba(value, mask, max_neg_val=None):
"""
Monotonic alignment search algorithm
Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
if max_neg_val is None:
max_neg_val = -np.inf # Patch for Sphinx complaint
value = value * mask
# device = value.device
# dtype = value.dtype
# value = value.cpu().detach().numpy()
# mask = mask.cpu().detach().numpy().astype(np.bool)
b, t_x, t_y = value.shape
direction = np.zeros(value.shape, dtype=np.int64)
v = np.zeros((b, t_x), dtype=np.float32)
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1)
for j in prange(t_y):
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = v1 >= v0
v_max = np.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = x_range <= j
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = np.where(mask, direction, 1)
path = np.zeros(value.shape, dtype=np.float32)
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
index_range = np.arange(b)
# for j in reversed(prange(t_y)):
for j in prange(t_y):
path[index_range, index, (t_y-1)-j] = 1
index = index + direction[index_range, index, (t_y-1)-j] - 1
path = path * mask.astype(np.float32)
# path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
# import pytorch_pfn_extras as ppe
# ppe.cuda.use_torch_mempool_in_cupy()
# print("torch.cuda.memory_allocated()", torch.cuda.memory_allocated())
def maximum_path_cupy(value, mask, max_neg_val=None):
"""
Monotonic alignment search algorithm
Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
if max_neg_val is None:
max_neg_val = -cp.inf # Patch for Sphinx complaint
value = value * mask
device = value.device
dtype = value.dtype
# value = value.cpu().detach().numpy()
# mask = mask.cpu().detach().numpy().astype(cp.bool)
value = cp.array(value)
mask = cp.array(mask).astype(cp.bool)
b, t_x, t_y = value.shape
direction = cp.zeros(value.shape, dtype=cp.int64)
v = cp.zeros((b, t_x), dtype=cp.float32)
x_range = cp.arange(t_x, dtype=cp.float32).reshape(1, -1)
for j in range(t_y):
v0 = cp.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = v1 >= v0
v_max = cp.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = x_range <= j
v = cp.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = cp.where(mask, direction, 1)
path = cp.zeros(value.shape, dtype=cp.float32)
index = mask[:, :, 0].sum(1).astype(cp.int64) - 1
index_range = cp.arange(b)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(cp.float32)
path = torch.as_tensor(path, device=device)
return path
def rand_segments(x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4):
"""Create random segments based on the input lengths.
Args:
x (torch.tensor): Input tensor.
x_lengths (torch.tensor): Input lengths.
segment_size (int): Expected output segment size.
Shapes:
- x: :math:`[B, C, T]`
- x_lengths: :math:`[B]`
"""
B, _, T = x.size()
if x_lengths is None:
x_lengths = T
max_idxs = x_lengths - segment_size + 1
assert all(max_idxs > 0), " [!] At least one sample is shorter than the segment size."
segment_indices = (torch.rand([B]).type_as(x) * max_idxs).long()
ret = segment(x, segment_indices, segment_size)
return ret, segment_indices
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4):
"""Segment each sample in a batch based on the provided segment indices
Args:
x (torch.tensor): Input tensor.
segment_indices (torch.tensor): Segment indices.
segment_size (int): Expected output segment size.
"""
segments = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
index_start = segment_indices[i]
index_end = index_start + segment_size
segments[i] = x[i, :, index_start:index_end]
return segments
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length, max_len=None):
"""Create a sequence mask for filtering padding in a sequence tensor.
Args:
sequence_length (torch.tensor): Sequence lengths.
max_len (int, Optional): Maximum sequence length. Defaults to None.
Shapes:
- mask: :math:`[B, T_max]`
"""
if max_len is None:
max_len = sequence_length.data.max()
seq_range = torch.arange(max_len, dtype=sequence_length.dtype, device=sequence_length.device)
# B x T_max
mask = seq_range.unsqueeze(0) < sequence_length.unsqueeze(1)
return mask
DEFAULT_MIN_BIN_WIDTH = 1e-3
DEFAULT_MIN_BIN_HEIGHT = 1e-3
DEFAULT_MIN_DERIVATIVE = 1e-3
def piecewise_rational_quadratic_transform(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails=None,
tail_bound=1.0,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE,
):
if tails is None:
spline_fn = rational_quadratic_spline
spline_kwargs = {}
else:
spline_fn = unconstrained_rational_quadratic_spline
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
outputs, logabsdet = spline_fn(
inputs=inputs,
unnormalized_widths=unnormalized_widths,
unnormalized_heights=unnormalized_heights,
unnormalized_derivatives=unnormalized_derivatives,
inverse=inverse,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
**spline_kwargs,
)
return outputs, logabsdet
def searchsorted(bin_locations, inputs, eps=1e-6):
bin_locations[..., -1] += eps
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
def unconstrained_rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails="linear",
tail_bound=1.0,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE,
):
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(inputs)
logabsdet = torch.zeros_like(inputs)
if tails == "linear":
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives[..., 0] = constant
unnormalized_derivatives[..., -1] = constant
outputs[outside_interval_mask] = inputs[outside_interval_mask]
logabsdet[outside_interval_mask] = 0
else:
raise RuntimeError("{} tails are not implemented.".format(tails))
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
inverse=inverse,
left=-tail_bound,
right=tail_bound,
bottom=-tail_bound,
top=tail_bound,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
)
return outputs, logabsdet
def rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
left=0.0,
right=1.0,
bottom=0.0,
top=1.0,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE,
):
if torch.min(inputs) < left or torch.max(inputs) > right:
raise ValueError("Input to a transform is not within its domain")
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0:
raise ValueError("Minimal bin width too large for the number of bins")
if min_bin_height * num_bins > 1.0:
raise ValueError("Minimal bin height too large for the number of bins")
widths = F.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
cumwidths = torch.cumsum(widths, dim=-1)
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
cumwidths = (right - left) * cumwidths + left
cumwidths[..., 0] = left
cumwidths[..., -1] = right
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
heights = F.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
cumheights = torch.cumsum(heights, dim=-1)
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
cumheights = (top - bottom) * cumheights + bottom
cumheights[..., 0] = bottom
cumheights[..., -1] = top
heights = cumheights[..., 1:] - cumheights[..., :-1]
if inverse:
bin_idx = searchsorted(cumheights, inputs)[..., None]
else:
bin_idx = searchsorted(cumwidths, inputs)[..., None]
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
delta = heights / widths
input_delta = delta.gather(-1, bin_idx)[..., 0]
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
input_heights = heights.gather(-1, bin_idx)[..., 0]
if inverse:
a = (inputs - input_cumheights) * (
input_derivatives + input_derivatives_plus_one - 2 * input_delta
) + input_heights * (input_delta - input_derivatives)
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
input_derivatives + input_derivatives_plus_one - 2 * input_delta
)
c = -input_delta * (inputs - input_cumheights)
discriminant = b.pow(2) - 4 * a * c
assert (discriminant >= 0).all()
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + (
(input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta
)
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * root.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - root).pow(2)
)
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -logabsdet
else:
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
denominator = input_delta + (
(input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta
)
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * theta.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - theta).pow(2)
)
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, logabsdet
from typing import Dict, List, Tuple
from torch.utils.data.sampler import WeightedRandomSampler
def get_language_weighted_sampler(items: list):
language_names = np.array([item[3] for item in items])
unique_language_names = np.unique(language_names).tolist()
language_ids = [unique_language_names.index(l) for l in language_names]
language_count = np.array([len(np.where(language_names == l)[0]) for l in unique_language_names])
weight_language = 1.0 / language_count
dataset_samples_weight = torch.from_numpy(np.array([weight_language[l] for l in language_ids])).double()
return WeightedRandomSampler(dataset_samples_weight, len(dataset_samples_weight))
import os
import re
from glob import glob
# def vctk(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None):
# items = []
# with open(f'{root_path}/metadata.csv') as f:
# lines = f.read().split("\n")
# for line in lines:
# fname = line.split("|")[0]
# text = line.split("|")[1]
# speaker_id = fname.split("_")[0]
# # if isinstance(ignored_speakers, list):
# # if speaker_id in ignored_speakers:
# # continue
# # wav_file = os.path.join(root_path, "wavs", speaker_id, fname)
# wav_file = os.path.join(root_path, "wavs", fname)
# items.append([text, wav_file, "VCTK_" + speaker_id])
# # items.append([text, wav_file, "VCTK_" + speaker_id, "en"])
# # items.append([text, wav_file, "VCTK_" + speaker_id])
# return items
# def xvaspeech(root_path, meta_files=None):
# num_speakers = 0
# lang = root_path.split("/")[-1]
# root_path = "/".join(root_path.split("/")[:-1])
# csv_files = glob(root_path + f'/{lang}_**/metadata.csv', recursive=True)
# # print(f'csv_files, {csv_files}')
# items = []
# for csv_file in csv_files:
# # ======== DEBUG
# # if "it_f4_danse" not in csv_file and "it_f4_nate" not in csv_file and "it_sk_malenordcommander" not in csv_file and "it_sk_femalenord" not in csv_file and "it_sk_femalecommander" not in csv_file:
# # if "it_f4_danse" not in csv_file and "it_f4_nate" not in csv_file and "it_sk_malenordcommander":
# # if "it_f4_nate" not in csv_file and "it_sk_malenordcommander":
# # if "de_f4_nate" not in csv_file:
# # pass
# # else:
# # continue
# # if "it_" in csv_file and "it_f4_nate" not in csv_file or "en_" in csv_file:
# # continue
# # ========
# csv_file = csv_file.replace("\\", "/")
# if os.path.isfile(csv_file):
# txt_file = csv_file
# else:
# txt_file = os.path.join(root_path, csv_file)
# folder = os.path.dirname(txt_file)
# # speaker_name_match = (txt_file.split("/female/")[1] if "/female/" in txt_file else txt_file.split("/male/")[1]).split("/")[0]
# # if speaker_name_match is None:
# # continue
# # speaker_name = speaker_name_match.group("speaker_name")
# speaker_name = root_path.split("/")[-1]
# # ignore speakers
# # if isinstance(ignored_speakers, list):
# # if speaker_name in ignored_speakers:
# # continue
# print(" | > {}".format(csv_file))
# has_registered_at_least_one = False
# with open(txt_file, "r", encoding="utf-8") as ttf:
# for line in ttf:
# cols = line.split("|")
# wav_file = os.path.join(folder, "wavs", (cols[0] + ".wav") if ".wav" not in cols[0] else cols[0])
# # if not meta_files:
# # # wav_file = os.path.join(folder, "wavs", cols[0] + ".wav")
# # wav_file = os.path.join(folder, "wavs", (cols[0] + ".wav") if ".wav" not in cols[0] else cols[0])
# # else:
# # # wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav")
# # wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", (cols[0] + ".wav") if ".wav" not in cols[0] else cols[0])
# # if os.path.isfile(wav_file):
# if os.path.exists(wav_file):
# text = cols[1].strip()
# items.append([text, wav_file, speaker_name])
# has_registered_at_least_one = True
# else:
# # M-AI-Labs have some missing samples, so just print the warning
# # print("> File %s does not exist!" % (wav_file))
# pass
# if has_registered_at_least_one:
# num_speakers += 1
# # print(f'mailabs formatter items, {len(items)}')
# return items, num_speakers
# def mailabs(root_path, meta_files=None, ignored_speakers=None):
# # print("=====================", "mailabs")
# """Normalizes M-AI-Labs meta data files to TTS format
# Args:
# root_path (str): root folder of the MAILAB language folder.
# meta_files (str): list of meta files to be used in the training. If None, finds all the csv files
# recursively. Defaults to None
# """
# speaker_regex = re.compile("by_book/(male|female)/(?P<speaker_name>[^/]+)/")
# if not meta_files:
# csv_files = glob(root_path + "/**/metadata.csv", recursive=True)
# else:
# csv_files = meta_files
# # meta_files = [f.strip() for f in meta_files.split(",")]
# items = []
# for csv_file in csv_files:
# csv_file = csv_file.replace("\\", "/")
# if "/mix/" in csv_file:
# continue
# if os.path.isfile(csv_file):
# txt_file = csv_file
# else:
# txt_file = os.path.join(root_path, csv_file)
# folder = os.path.dirname(txt_file)
# # print(f'txt_file, {txt_file}')
# # print(f'folder, {folder}')
# # print(f'speaker_regex, {speaker_regex}')
# # determine speaker based on folder structure...
# # speaker_name_match = speaker_regex.search(txt_file)
# # print(f'speaker_name_match, {speaker_name_match}')
# speaker_name_match = (txt_file.split("/female/")[1] if "/female/" in txt_file else txt_file.split("/male/")[1]).split("/")[0]
# if speaker_name_match is None:
# continue
# # speaker_name = speaker_name_match.group("speaker_name")
# speaker_name = speaker_name_match
# # ignore speakers
# if isinstance(ignored_speakers, list):
# if speaker_name in ignored_speakers:
# continue
# print(" | > {}".format(csv_file))
# with open(txt_file, "r", encoding="utf-8") as ttf:
# for line in ttf:
# cols = line.split("|")
# if not meta_files:
# # wav_file = os.path.join(folder, "wavs", cols[0] + ".wav")
# wav_file = os.path.join(folder, "wavs", (cols[0] + ".wav") if ".wav" not in cols[0] else cols[0])
# else:
# # wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav")
# wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", (cols[0] + ".wav") if ".wav" not in cols[0] else cols[0])
# if os.path.isfile(wav_file):
# text = cols[1].strip()
# items.append([text, wav_file, speaker_name])
# else:
# # M-AI-Labs have some missing samples, so just print the warning
# # print("> File %s does not exist!" % (wav_file))
# pass
# # print(f'mailabs formatter items, {len(items)}')
# return items
from collections import Counter
def split_dataset(items):
"""Split a dataset into train and eval. Consider speaker distribution in multi-speaker training.
Args:
items (List[List]): A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`.
"""
speakers = [item[-1] for item in items]
is_multi_speaker = len(set(speakers)) > 1
eval_split_size = min(500, int(len(items) * 0.01))
# eval_split_size = min(10, int(len(items) * 0.01))
# assert eval_split_size > 0, " [!] You do not have enough samples to train. You need at least 100 samples."
np.random.seed(0)
np.random.shuffle(items)
if is_multi_speaker:
items_eval = []
speakers = [item[-1] for item in items]
speaker_counter = Counter(speakers)
while len(items_eval) < eval_split_size:
item_idx = np.random.randint(0, len(items))
speaker_to_be_removed = items[item_idx][-1]
if speaker_counter[speaker_to_be_removed] > 1:
items_eval.append(items[item_idx])
speaker_counter[speaker_to_be_removed] -= 1
del items[item_idx]
return items_eval, items
return items[:eval_split_size], items[eval_split_size:]
from math import exp
from torch.autograd import Variable
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
# TODO: check if you need AMP disabled
# with torch.cuda.amp.autocast(enabled=False):
mu1_sq = mu1.float().pow(2)
mu2_sq = mu2.float().pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
return ssim_map.mean(1).mean(1).mean(1)
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel).type_as(img1)
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def make_symbols(
characters,
phonemes=None,
punctuations="!'(),-.:;? ",
pad="_",
eos="~",
bos="^",
unique=True,
): # pylint: disable=redefined-outer-name
"""Function to create symbols and phonemes
TODO: create phonemes_to_id and symbols_to_id dicts here."""
_symbols = list(characters)
_symbols = [bos] + _symbols if len(bos) > 0 and bos is not None else _symbols
_symbols = [eos] + _symbols if len(bos) > 0 and eos is not None else _symbols
_symbols = [pad] + _symbols if len(bos) > 0 and pad is not None else _symbols
_phonemes = None
if phonemes is not None:
_phonemes_sorted = (
sorted(list(set(phonemes))) if unique else sorted(list(phonemes))
) # this is to keep previous models compatible.
# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
# _arpabet = ["@" + s for s in _phonemes_sorted]
# Export all symbols:
_phonemes = [pad, eos, bos] + list(_phonemes_sorted) + list(punctuations)
# _symbols += _arpabet
return _symbols, _phonemes
# Regular expression matching text enclosed in curly braces:
_CURLY_RE = re.compile(r"(.*?)\{(.+?)\}(.*)")
_whitespace_re = re.compile(r"\s+")
def _should_keep_symbol(s):
return s in _symbol_to_id and s not in ["~", "^", "_"]
def lowercase(text):
return text.lower()
def replace_symbols(text, lang="en"):
text = text.replace(";", ",")
text = text.replace("-", " ")
text = text.replace(":", ",")
if lang == "en":
text = text.replace("&", " and ")
elif lang == "fr":
text = text.replace("&", " et ")
elif lang == "pt":
text = text.replace("&", " e ")
return text
def remove_aux_symbols(text):
text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text)
return text
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text).strip()
def multilingual_cleaners(text):
"""Pipeline for multilingual text"""
text = lowercase(text)
text = replace_symbols(text, lang=None)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def _clean_text(text, cleaner_names):
for name in cleaner_names:
# cleaner = getattr(cleaners, name)
cleaner = multilingual_cleaners
if not cleaner:
raise Exception("Unknown cleaner: %s" % name)
text = cleaner(text)
return text
def _symbols_to_sequence(syms):
return [_symbol_to_id[s] for s in syms if _should_keep_symbol(s)]
def _arpabet_to_sequence(text):
return _symbols_to_sequence(["@" + s for s in text.split()])
def intersperse(sequence, token):
result = [token] * (len(sequence) * 2 + 1)
result[1::2] = sequence
return result
def text_to_sequence(
text: str, cleaner_names: List[str], custom_symbols: List[str] = None, tp: Dict = None, add_blank: bool = False
) -> List[int]:
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
If `custom_symbols` is provided, it will override the default symbols.
Args:
text (str): string to convert to a sequence
cleaner_names (List[str]): names of the cleaner functions to run the text through
tp (Dict): dictionary of character parameters to use a custom character set.
add_blank (bool): option to add a blank token between each token.
Returns:
List[int]: List of integers corresponding to the symbols in the text
"""
# pylint: disable=global-statement
global _symbol_to_id, _symbols
if custom_symbols is not None:
_symbols = custom_symbols
elif tp:
_symbols, _ = make_symbols(**tp)
_symbol_to_id = {s: i for i, s in enumerate(_symbols)}
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while text:
m = _CURLY_RE.match(text)
if not m:
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
break
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
if add_blank:
sequence = intersperse(sequence, len(_symbols)) # add a blank token (new), whose id number is len(_symbols)
return sequence
import librosa.util as librosa_util
from scipy.signal import get_window
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
n_fft=800, dtype=np.float32, norm=None):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft
n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)
# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
win_sq = librosa_util.pad_center(win_sq, n_fft)
# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
return x
def _pad_data(x, length):
_pad = 0
assert x.ndim == 1
return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad)
def _pad_stop_target(x: np.ndarray, length: int, pad_val=1) -> np.ndarray:
"""Pad stop target array.
Args:
x (np.ndarray): Stop target array.
length (int): Length after padding.
pad_val (int, optional): Padding value. Defaults to 1.
Returns:
np.ndarray: Padded stop target array.
"""
assert x.ndim == 1
return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=pad_val)
def _pad_tensor(x, length):
_pad = 0.0
assert x.ndim == 2
x = np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode="constant", constant_values=_pad)
return x
def prepare_tensor(inputs, out_steps):
max_len = max((x.shape[1] for x in inputs))
remainder = max_len % out_steps
pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len
return np.stack([_pad_tensor(x, pad_len) for x in inputs])
def prepare_data(inputs):
max_len = max((len(x) for x in inputs))
return np.stack([_pad_data(x, max_len) for x in inputs])
def prepare_stop_target(inputs, out_steps):
"""Pad row vectors with 1."""
max_len = max((x.shape[0] for x in inputs))
remainder = max_len % out_steps
pad_len = max_len + (out_steps - remainder) if remainder > 0 else max_len
return np.stack([_pad_stop_target(x, pad_len) for x in inputs])
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def generate_path(duration, mask):
"""
duration: [b, t_x]
mask: [b, t_x, t_y]
"""
device = duration.device
b, t_x, t_y = mask.shape
cum_duration = torch.cumsum(duration, 1)
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path * mask
return path
def format_time (seconds):
time_str = ""
if seconds>60*60*24:
days = int(seconds/(60*60*24))
time_str += f'{days}d '
seconds -= days*(60*60*24)
if seconds>60*60:
hours = int(seconds/(60*60))
time_str += f'{hours}h '
seconds -= hours*(60*60)
if seconds>60:
minutes = int(seconds/(60))
time_str += f'{minutes}m '
seconds -= minutes*(60)
if seconds>0:
time_str += f'{int(seconds)}s '
return time_str |