Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 26,126 Bytes
19c8b95 c79df46 19c8b95 ce58239 19c8b95 13db872 19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import os
import sys
import traceback
import multiprocessing
torch_dml_device = None
if __name__ == '__main__':
server = None
multiprocessing.freeze_support()
PROD = 'xVASynth.exe' in os.listdir(".")
# Saves me having to do backend re-compilations for every little UI hotfix
with open(f'{"./resources/app" if PROD else "."}/javascript/script.js', encoding="utf8") as f:
lines = f.read().split("\n")
APP_VERSION = lines[1].split('"v')[1].split('"')[0]
# Imports and logger setup
# ========================
try:
# import python.pyinstaller_imports
import numpy
import logging
from logging.handlers import RotatingFileHandler
import json
from http.server import BaseHTTPRequestHandler, HTTPServer
from socketserver import ThreadingMixIn
from python.audio_post import run_audio_post, prepare_input_audio, mp_ffmpeg_output, normalize_audio, start_microphone_recording, move_recorded_file
import ffmpeg
except:
print(traceback.format_exc())
with open("./DEBUG_err_imports.txt", "w+") as f:
f.write(traceback.format_exc())
# Pyinstaller hack
# ================
try:
def script_method(fn, _rcb=None):
return fn
def script(obj, optimize=True, _frames_up=0, _rcb=None):
return obj
import torch.jit
torch.jit.script_method = script_method
torch.jit.script = script
import torch
import tqdm
import regex
except:
with open("./DEBUG_err_import_torch.txt", "w+") as f:
f.write(traceback.format_exc())
# ================
CPU_ONLY = not torch.cuda.is_available()
try:
logger = logging.getLogger('serverLog')
logger.setLevel(logging.DEBUG)
server_log_path = f'{os.path.dirname(os.path.realpath(__file__))}/{"../../../" if PROD else ""}/server.log'
fh = RotatingFileHandler(server_log_path, maxBytes=2*1024*1024, backupCount=5)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
formatter = logging.Formatter('%(asctime)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info(f'New session. Version: {APP_VERSION}. Installation: {"CPU" if CPU_ONLY else "CPU+GPU"} | Prod: {PROD} | Log path: {server_log_path}')
logger.orig_info = logger.info
def prefixed_log (msg):
logger.info(f'{logger.logging_prefix}{msg}')
def set_logger_prefix (prefix=""):
if len(prefix):
logger.logging_prefix = f'[{prefix}]: '
logger.log = prefixed_log
else:
logger.log = logger.orig_info
logger.set_logger_prefix = set_logger_prefix
logger.set_logger_prefix("")
except:
with open("./DEBUG_err_logger.txt", "w+") as f:
f.write(traceback.format_exc())
try:
logger.info(traceback.format_exc())
except:
pass
if CPU_ONLY:
torch_dml_device = torch.device("cpu")
try:
from python.plugins_manager import PluginManager
plugin_manager = PluginManager(APP_VERSION, PROD, CPU_ONLY, logger)
active_plugins = plugin_manager.get_active_plugins_count()
logger.info(f'Plugin manager loaded. {active_plugins} active plugins.')
except:
logger.info("Plugin manager FAILED.")
logger.info(traceback.format_exc())
plugin_manager.run_plugins(plist=plugin_manager.plugins["start"]["pre"], event="pre start", data=None)
# ======================== Models manager
modelsPaths = {}
try:
from python.models_manager import ModelsManager
models_manager = ModelsManager(logger, PROD, device="cpu")
except:
logger.info("Models manager failed to initialize")
logger.info(traceback.format_exc())
# ========================
print("Models ready")
logger.info("Models ready")
# Server
class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
pass
class Handler(BaseHTTPRequestHandler):
def _set_response(self):
self.send_response(200)
self.send_header("Content-Type", "text/html")
self.end_headers()
def do_GET(self):
returnString = "[DEBUG] Get request for {}".format(self.path).encode("utf-8")
logger.info(returnString)
self._set_response()
self.wfile.write(returnString)
def do_POST(self):
global modelsPaths
post_data = ""
try:
content_length = int(self.headers['Content-Length'])
post_data = json.loads(self.rfile.read(content_length).decode('utf-8')) if content_length else {}
req_response = "POST request for {}".format(self.path)
print("POST")
print(self.path)
# For headless mode
if self.path == "/setAvailableVoices":
modelsPaths = json.loads(post_data["modelsPaths"])
if self.path == "/getAvailableVoices":
models = {}
for gameId in modelsPaths.keys():
models[gameId] = []
modelJSONs = sorted(os.listdir(modelsPaths[gameId]))
for fname in modelJSONs:
if fname.endswith(".json"):
with open(f'{modelsPaths[gameId]}/{fname}', "r") as f:
jsons = f.read()
metadata = json.loads(jsons)
models[gameId].append({
"modelType": metadata["modelType"],
"author": metadata["author"] if "author" in metadata else "",
"emb_size": metadata["emb_size"] if "emb_size" in metadata else 1,
"voiceId": metadata["games"][0]["voiceId"],
"voiceName": metadata["games"][0]["voiceName"],
"gender": metadata["games"][0]["gender"] if "gender" in metadata["games"][0] else "other",
"emb_i": metadata["games"][0]["emb_i"] if "emb_i" in metadata["games"][0] else 0
})
req_response = json.dumps(models)
if self.path == "/setVocoder":
logger.info("POST {}".format(self.path))
logger.info(post_data)
vocoder = post_data["vocoder"]
modelPath = post_data["modelPath"]
hifi_gan = "waveglow" not in vocoder
if vocoder=="qnd":
req_response = models_manager.load_model("hifigan", f'{"./resources/app" if PROD else "."}/python/hifigan/hifi.pt')
elif not hifi_gan:
req_response = models_manager.load_model(vocoder, modelPath)
req_response = "" if req_response is None else req_response
if self.path == "/stopServer":
logger.info("POST {}".format(self.path))
logger.info("STOPPING SERVER")
server.shutdown()
sys.exit()
if self.path == "/normalizeAudio":
input_path = post_data["input_path"]
output_path = post_data["output_path"]
req_response = normalize_audio(input_path, output_path)
if self.path == "/customEvent":
logger.info("POST {}".format(self.path))
plugin_manager.run_plugins(plist=plugin_manager.plugins["custom-event"], event="custom-event", data=post_data)
if self.path == "/setDevice":
logger.info("POST {}".format(self.path))
logger.info(post_data)
if post_data["device"] == "cpu":
logger.info("Setting torch device to CPU")
device = torch.device("cpu")
elif CPU_ONLY:
logger.info("Setting torch device to DirectML")
device = torch_dml_device
else:
logger.info("Setting torch device to CUDA")
device = torch.device("cuda:0")
models_manager.set_device(device)
if self.path == "/loadModel":
logger.info("POST {}".format(self.path))
logger.info(post_data)
ckpt = post_data["model"]
modelType = post_data["modelType"]
instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
modelType = modelType.lower().replace(".", "_").replace(" ", "")
post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
n_speakers = post_data["model_speakers"] if "model_speakers" in post_data else None
base_lang = post_data["base_lang"] if "base_lang" in post_data else None
plugin_manager.run_plugins(plist=plugin_manager.plugins["load-model"]["pre"], event="pre load-model", data=post_data)
models_manager.load_model(modelType, ckpt+".pt", instance_index=instance_index, n_speakers=n_speakers, base_lang=base_lang)
plugin_manager.run_plugins(plist=plugin_manager.plugins["load-model"]["post"], event="post load-model", data=post_data)
if modelType=="fastpitch1_1":
models_manager.models_bank["fastpitch1_1"][instance_index].init_arpabet_dicts()
if self.path == "/getG2P":
text = post_data["text"]
base_lang = post_data["base_lang"]
model = models_manager.models("xVAPitch", instance_index=0)
returnString = model.getG2P(text, base_lang)
req_response = returnString
if self.path == "/synthesizeSimple":
logger.info("POST {}".format(self.path))
text = post_data["sequence"]
instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
out_path = post_data["outfile"]
base_lang = post_data["base_lang"] if "base_lang" in post_data else None
base_emb = post_data["base_emb"] if "base_emb" in post_data else None
useCleanup = post_data["useCleanup"] if "useCleanup" in post_data else None
model = models_manager.models("xvapitch", instance_index=instance_index)
req_response = model.infer(plugin_manager, text, out_path, vocoder=None, \
speaker_i=None, editor_data=None, pace=None, old_sequence=None, \
globalAmplitudeModifier=None, base_lang=base_lang, base_emb=base_emb, useSR=False, useCleanup=useCleanup)
if self.path == "/synthesize":
logger.info("POST {}".format(self.path))
post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
# Handle the case where the vocoder remains selected on app start-up, with auto-HiFi turned off, but no setVocoder call is made before synth
continue_synth = True
if "waveglow" in post_data["vocoder"]:
waveglowPath = post_data["waveglowPath"]
req_response = models_manager.load_model(post_data["vocoder"], waveglowPath, instance_index=instance_index)
if req_response=="ENOENT":
continue_synth = False
device = post_data["device"] if "device" in post_data else models_manager.device_label
device = torch.device("cpu") if device=="cpu" else (torch_dml_device if CPU_ONLY else torch.device("cuda:0"))
models_manager.set_device(device, instance_index=instance_index)
if continue_synth:
plugin_manager.set_context(post_data["pluginsContext"])
plugin_manager.run_plugins(plist=plugin_manager.plugins["synth-line"]["pre"], event="pre synth-line", data=post_data)
modelType = post_data["modelType"]
text = post_data["sequence"]
pace = float(post_data["pace"])
out_path = post_data["outfile"]
base_lang = post_data["base_lang"] if "base_lang" in post_data else None
base_emb = post_data["base_emb"] if "base_emb" in post_data else None
pitch = post_data["pitch"] if "pitch" in post_data else None
energy = post_data["energy"] if "energy" in post_data else None
emAngry = post_data["emAngry"] if "emAngry" in post_data else None
emHappy = post_data["emHappy"] if "emHappy" in post_data else None
emSad = post_data["emSad"] if "emSad" in post_data else None
emSurprise = post_data["emSurprise"] if "emSurprise" in post_data else None
editorStyles = post_data["editorStyles"] if "editorStyles" in post_data else None
duration = post_data["duration"] if "duration" in post_data else None
speaker_i = post_data["speaker_i"] if "speaker_i" in post_data else None
useSR = post_data["useSR"] if "useSR" in post_data else None
useCleanup = post_data["useCleanup"] if "useCleanup" in post_data else None
vocoder = post_data["vocoder"]
globalAmplitudeModifier = float(post_data["globalAmplitudeModifier"]) if "globalAmplitudeModifier" in post_data else None
editor_data = [pitch, duration, energy, emAngry, emHappy, emSad, emSurprise, editorStyles]
old_sequence = post_data["old_sequence"] if "old_sequence" in post_data else None
model = models_manager.models(modelType.lower().replace(".", "_").replace(" ", ""), instance_index=instance_index)
req_response = model.infer(plugin_manager, text, out_path, vocoder=vocoder, \
speaker_i=speaker_i, editor_data=editor_data, pace=pace, old_sequence=old_sequence, \
globalAmplitudeModifier=globalAmplitudeModifier, base_lang=base_lang, base_emb=base_emb, useSR=useSR, useCleanup=useCleanup)
plugin_manager.run_plugins(plist=plugin_manager.plugins["synth-line"]["post"], event="post synth-line", data=post_data)
if self.path == "/synthesize_batch":
post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
plugin_manager.set_context(post_data["pluginsContext"])
plugin_manager.run_plugins(plist=plugin_manager.plugins["batch-synth-line"]["pre"], event="pre batch-synth-line", data=post_data)
modelType = post_data["modelType"]
linesBatch = post_data["linesBatch"]
speaker_i = post_data["speaker_i"]
vocoder = post_data["vocoder"]
outputJSON = post_data["outputJSON"]
useSR = post_data["useSR"]
useCleanup = post_data["useCleanup"]
with torch.no_grad():
try:
model = models_manager.models(modelType.lower().replace(".", "_").replace(" ", ""))
req_response = model.infer_batch(plugin_manager, linesBatch, outputJSON=outputJSON, vocoder=vocoder, speaker_i=speaker_i, useSR=useSR, useCleanup=useCleanup)
except RuntimeError as e:
if "CUDA out of memory" in str(e):
req_response = "CUDA OOM"
else:
req_response = traceback.format_exc()
logger.info(req_response)
except:
e = traceback.format_exc()
if "CUDA out of memory" in str(e):
req_response = "CUDA OOM"
else:
req_response = e
logger.info(e)
post_data["req_response"] = req_response
plugin_manager.run_plugins(plist=plugin_manager.plugins["batch-synth-line"]["post"], event="post batch-synth-line", data=post_data)
if self.path == "/runSpeechToSpeech":
logger.info("POST {}".format(self.path))
input_path = post_data["input_path"]
style_emb = post_data["style_emb"]
options = post_data["options"]
audio_out_path = post_data["audio_out_path"]
useSR = post_data["useSR"]
useCleanup = post_data["useCleanup"]
vc_strength = post_data["vc_strength"]
removeNoise = post_data["removeNoise"]
removeNoiseStrength = post_data["removeNoiseStrength"]
final_path = prepare_input_audio(PROD, logger, input_path, removeNoise, removeNoiseStrength)
models_manager.init_model("speaker_rep")
models_manager.load_model("speaker_rep", f'{"./resources/app" if PROD else "."}/python/xvapitch/speaker_rep/speaker_rep.pt')
try:
out = models_manager.models("xvapitch").run_speech_to_speech(final_path, audio_out_path.replace(".wav", "_tempS2S.wav"), style_emb, models_manager, plugin_manager, vc_strength=vc_strength, useSR=useSR, useCleanup=useCleanup)
if out=="TOO_SHORT":
req_response = "TOO_SHORT"
else:
data_out = ""
req_response = data_out
# For use by /outputAudio
post_data["input_path"] = audio_out_path.replace(".wav", "_tempS2S.wav")
post_data["output_path"] = audio_out_path
except ValueError:
req_response = traceback.format_exc()
logger.info(req_response)
except RuntimeError:
req_response = traceback.format_exc()
logger.info(req_response)
except Exception as e:
req_response = traceback.format_exc()
logger.info(req_response)
logger.info(repr(e))
if self.path == "/batchOutputAudio":
input_paths = post_data["input_paths"]
output_paths = post_data["output_paths"]
processes = post_data["processes"]
options = json.loads(post_data["options"])
# For plugins
extraInfo = {}
if "extraInfo" in post_data:
extraInfo = json.loads(post_data["extraInfo"])
extraInfo["pluginsContext"] = json.loads(post_data["pluginsContext"])
extraInfo["audio_options"] = options
extraInfo["input_paths"] = input_paths
extraInfo["output_paths"] = output_paths
extraInfo["processes"] = processes
extraInfo["ffmpeg"] = ffmpeg
plugin_manager.run_plugins(plist=plugin_manager.plugins["mp-output-audio"]["pre"], event="pre mp-output-audio", data=extraInfo)
req_response = mp_ffmpeg_output(PROD, logger, processes, input_paths, output_paths, options)
plugin_manager.run_plugins(plist=plugin_manager.plugins["mp-output-audio"]["post"], event="post mp-output-audio", data=extraInfo)
if self.path == "/outputAudio" or (self.path == "/runSpeechToSpeech" and req_response==""):
isBatchMode = post_data["isBatchMode"]
if not isBatchMode:
logger.info("POST /outputAudio")
input_path = post_data["input_path"]
output_path = post_data["output_path"]
options = json.loads(post_data["options"])
# For plugins
extraInfo = {}
if "extraInfo" in post_data:
extraInfo = json.loads(post_data["extraInfo"])
extraInfo["pluginsContext"] = json.loads(post_data["pluginsContext"])
extraInfo["audio_options"] = options
extraInfo["input_path"] = input_path
extraInfo["output_path"] = output_path
extraInfo["ffmpeg"] = ffmpeg
plugin_manager.run_plugins(plist=plugin_manager.plugins["output-audio"]["pre"], event="pre output-audio", data=extraInfo)
input_path = post_data["input_path"]
output_path = post_data["output_path"]
req_response = run_audio_post(PROD, None if isBatchMode else logger, input_path, output_path, options)
plugin_manager.run_plugins(plist=plugin_manager.plugins["output-audio"]["post"], event="post output-audio", data=extraInfo)
if self.path == "/refreshPlugins":
logger.info("POST {}".format(self.path))
status = plugin_manager.refresh_active_plugins()
logger.info("status")
logger.info(status)
req_response = ",".join(status)
if self.path == "/getWavV3StyleEmb":
logger.info("POST {}".format(self.path))
wav_path = post_data["wav_path"]
models_manager.init_model("speaker_rep")
load_resp = models_manager.load_model("speaker_rep", f'{"./resources/app" if PROD else "."}/python/xvapitch/speaker_rep/speaker_rep.pt')
if load_resp=="ENOENT":
req_response = "ENOENT"
else:
style_emb = models_manager.models("speaker_rep").compute_embedding(wav_path).squeeze().cpu().detach().numpy()
req_response = ",".join([str(v) for v in style_emb])
if self.path == "/computeEmbsAndDimReduction":
logger.info("POST {}".format(self.path))
models_manager.init_model("speaker_rep")
load_resp = models_manager.load_model("speaker_rep", f'{"./resources/app" if PROD else "."}/python/xvapitch/speaker_rep/speaker_rep.pt')
embs = models_manager.models("speaker_rep").reduce_data_dimension(post_data["mappings"], post_data["includeAllVoices"], post_data["onlyInstalled"], post_data["algorithm"])
req_response = embs
if self.path == "/checkReady":
modelsPaths = json.loads(post_data["modelsPaths"])
device = torch.device("cpu") if post_data["device"]=="cpu" else (torch_dml_device if CPU_ONLY else torch.device("cuda:0"))
models_manager.set_device(device)
req_response = "ready"
if self.path == "/updateARPABet":
if "fastpitch1_1" in list(models_manager.models_bank.keys()):
models_manager.models_bank["fastpitch1_1"].refresh_arpabet_dicts()
if self.path == "/start_microphone_recording":
start_microphone_recording(logger, models_manager, f'{"./resources/app" if PROD else "."}')
req_response = ""
if self.path == "/move_recorded_file":
file_path = post_data["file_path"]
move_recorded_file(PROD, logger, models_manager, f'{"./resources/app" if PROD else "."}', file_path)
self._set_response()
self.wfile.write(req_response.encode("utf-8"))
except Exception as e:
with open("./DEBUG_request.txt", "w+") as f:
f.write(traceback.format_exc())
f.write(str(post_data))
logger.info("Post Error:\n {}".format(repr(e)))
print(traceback.format_exc())
logger.info(traceback.format_exc())
try:
# server = HTTPServer(("",8008), Handler)
server = ThreadedHTTPServer(("",8008), Handler)
# Prevent issues with socket reuse
server.allow_reuse_address = True
except:
with open("./DEBUG_server_error.txt", "w+") as f:
f.write(traceback.format_exc())
logger.info(traceback.format_exc())
try:
plugin_manager.run_plugins(plist=plugin_manager.plugins["start"]["post"], event="post start", data=None)
print("Server ready")
logger.info("Server ready")
server.serve_forever()
except KeyboardInterrupt:
pass
server.server_close()
|