Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 20,311 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import os
import re
import json
import codecs
import ffmpeg
import argparse
import torch
import torch.nn as nn
from python.fastpitch1_1 import models
from scipy.io.wavfile import write
from torch.nn.utils.rnn import pad_sequence
from python.common.text import text_to_sequence, sequence_to_text
ARPAbet_replacements_dict = {
"YO": "IY0 UW0",
"UH": "UH0",
"AR": "R",
"EY": "EY0",
"A": "AA0",
"AW": "AW0",
"X": "K S",
"CX": "K HH",
"AO": "AO0",
"PF": "P F",
"AY": "AY0",
"OE": "OW0 IY0",
"IY": "IY0",
"EH": "EH0",
"OY": "OY0",
"IH": "IH0",
"H": "HH"
}
class FastPitch1_1(object):
def __init__(self, logger, PROD, device, models_manager):
super(FastPitch1_1, self).__init__()
self.logger = logger
self.PROD = PROD
self.models_manager = models_manager
self.device = device
self.ckpt_path = None
self.arpabet_dict = {}
torch.backends.cudnn.benchmark = True
self.init_model("english_basic")
self.isReady = True
def init_model (self, symbols_alphabet):
parser = argparse.ArgumentParser(description='PyTorch FastPitch Inference', allow_abbrev=False)
self.symbols_alphabet = symbols_alphabet
model_parser = models.parse_model_args("FastPitch", symbols_alphabet, parser, add_help=False)
model_args, model_unk_args = model_parser.parse_known_args()
model_config = models.get_model_config("FastPitch", model_args)
self.model = models.get_model("FastPitch", model_config, self.device, self.logger, forward_is_infer=True, jitable=False)
self.model.eval()
self.model.device = self.device
def load_state_dict (self, ckpt_path, ckpt, n_speakers=1, base_lang=None):
self.ckpt_path = ckpt_path
with open(ckpt_path.replace(".pt", ".json"), "r") as f:
data = json.load(f)
if "symbols_alphabet" in data.keys() and data["symbols_alphabet"]!=self.symbols_alphabet:
self.logger.info(f'Changing symbols_alphabet from {self.symbols_alphabet} to {data["symbols_alphabet"]}')
self.init_model(data["symbols_alphabet"])
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
self.model.load_state_dict(ckpt, strict=False)
self.model = self.model.float()
self.model.eval()
def init_arpabet_dicts (self):
if len(list(self.arpabet_dict.keys()))==0:
self.refresh_arpabet_dicts()
def refresh_arpabet_dicts (self):
self.arpabet_dict = {}
json_files = sorted(os.listdir(f'{"./resources/app" if self.PROD else "."}/arpabet'))
json_files = [fname for fname in json_files if fname.endswith(".json")]
for fname in json_files:
with codecs.open(f'{"./resources/app" if self.PROD else "."}/arpabet/{fname}', encoding="utf-8") as f:
json_data = json.load(f)
for word in list(json_data["data"].keys()):
if json_data["data"][word]["enabled"]==True:
self.arpabet_dict[word] = json_data["data"][word]["arpabet"]
def infer_arpabet_dict (self, sentence, plugin_manager=None):
dict_words = list(self.arpabet_dict.keys())
data_context = {}
data_context["sentence"] = sentence
data_context["dict_words"] = dict_words
data_context["language"] = "en"
plugin_manager.run_plugins(plist=plugin_manager.plugins["arpabet-replace"]["pre"], event="pre arpabet-replace", data=data_context)
sentence = data_context["sentence"]
dict_words = data_context["dict_words"]
# Don't run the ARPAbet replacement for every single word, as it would be too slow. Instead, do it only for words that are actually present in the prompt
words_in_prompt = (sentence+" ").replace("}","").replace("{","").replace(",","").replace("?","").replace("!","").replace("...",".").replace(". "," ").lower().split(" ")
words_in_prompt = [word.strip() for word in words_in_prompt if len(word.strip()) and word in dict_words]
if len(words_in_prompt):
# Pad out punctuation, to make sure they don't get used in the word look-ups
sentence = " "+sentence.replace(",", " ,").replace(".", " .").replace("!", " !").replace("?", " ?")+" "
for dict_word in words_in_prompt:
arpabet_string = " "+self.arpabet_dict[dict_word]+" "
if "CX" in arpabet_string:
# German:
# hhhhh sound After "a", "o", "u" and "au"
# The usual K HH otherwise
# Need to account for multiple ch per word
pass
for key in ARPAbet_replacements_dict.keys():
arpabet_string = arpabet_string.replace(f' {key} ', f' {ARPAbet_replacements_dict[key]} ')
arpabet_string = arpabet_string.strip()
sentence = re.sub("(?<!\{)\s"+dict_word.strip().replace(".", "\.").replace("(", "\(").replace(")", "\)")+"\s(?![\w\s\(\)]*[\}])", " {"+arpabet_string+"} ", sentence, flags=re.IGNORECASE)
# Do it twice, because re will not re-use spaces, so if you have two neighbouring words to be replaced,
# and they share a space character, one of them won't get changed
sentence = re.sub("(?<!\{)\s"+dict_word.strip().replace(".", "\.").replace("(", "\(").replace(")", "\)")+"\s(?![\w\s\(\)]*[\}])", " {"+arpabet_string+"} ", sentence, flags=re.IGNORECASE)
# Undo the punctuation padding, to retain the original sentence structure
sentence = sentence.replace(" ,", ",").replace(" .", ".").replace(" !", "!").replace(" ?", "?")
sentence = re.sub("^\s+", " ", sentence) if sentence.startswith(" ") else re.sub("^\s*", "", sentence)
sentence = re.sub("\s+$", " ", sentence) if sentence.endswith(" ") else re.sub("\s*$", "", sentence)
data_context = {}
data_context["sentence"] = sentence
plugin_manager.run_plugins(plist=plugin_manager.plugins["arpabet-replace"]["post"], event="post arpabet-replace", data=data_context)
sentence = data_context["sentence"]
return sentence
def infer_batch(self, plugin_manager, linesBatch, outputJSON, vocoder, speaker_i, old_sequence=None, useSR=False, useCleanup=False):
print(f'Inferring batch of {len(linesBatch)} lines')
sigma_infer = 0.9
stft_hop_length = 256
sampling_rate = 22050
denoising_strength = 0.01
text_sequences = []
cleaned_text_sequences = []
for record in linesBatch:
text = record[0]
text = re.sub(r'[^a-zA-ZäöüÄÖÜß_\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', text)
text = self.infer_arpabet_dict(text, plugin_manager)
text = text.replace("(", "").replace(")", "")
text = re.sub(r'[^a-zA-ZäöüÄÖÜß\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', text)
sequence = text_to_sequence(text, "english_basic", ['english_cleaners'])
cleaned_text_sequences.append(sequence_to_text("english_basic", sequence))
text = torch.LongTensor(sequence)
text_sequences.append(text)
text_sequences = pad_sequence(text_sequences, batch_first=True).to(self.device)
with torch.no_grad():
pace = torch.tensor([record[3] for record in linesBatch]).unsqueeze(1).to(self.device)
pitch_amp = torch.tensor([record[7] for record in linesBatch]).unsqueeze(1).to(self.device)
pitch_data = None # Maybe in the future
mel, mel_lens, dur_pred, pitch_pred, energy_pred, start_index, end_index = self.model.infer_advanced(self.logger, plugin_manager, cleaned_text_sequences, text_sequences, speaker_i=speaker_i, pace=pace, pitch_data=pitch_data, old_sequence=None, pitch_amp=pitch_amp)
if "waveglow" in vocoder:
self.models_manager.init_model(vocoder)
audios = self.models_manager.models(vocoder).model.infer(mel, sigma=sigma_infer)
audios = self.models_manager.models(vocoder).denoiser(audios.float(), strength=denoising_strength).squeeze(1)
for i, audio in enumerate(audios):
audio = audio[:mel_lens[i].item() * stft_hop_length]
audio = audio/torch.max(torch.abs(audio))
output = linesBatch[i][4]
audio = audio.cpu().numpy()
if useCleanup:
ffmpeg_path = f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
write(output.replace(".wav", "_preSR.wav"), sampling_rate, audio)
else:
write(output.replace(".wav", "_preCleanupPreFFmpeg.wav"), sampling_rate, audio)
stream = ffmpeg.input(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = output.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
write(output.replace(".wav", "_preSR.wav") if useSR else output, sampling_rate, audio)
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(output.replace(".wav", "_preSR.wav"), output.replace(".wav", "_preCleanup.wav") if useCleanup else output)
os.remove(output.replace(".wav", "_preSR.wav"))
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(output.replace(".wav", "_preCleanup.wav"), output)
os.remove(output.replace(".wav", "_preCleanup.wav"))
del audios
else:
self.models_manager.load_model("hifigan", f'{"./resources/app" if self.PROD else "."}/python/hifigan/hifi.pt' if vocoder=="qnd" else self.ckpt_path.replace(".pt", ".hg.pt"))
y_g_hat = self.models_manager.models("hifigan").model(mel)
audios = y_g_hat.view((y_g_hat.shape[0], y_g_hat.shape[2]))
# audio = audio * 2.3026 # This brings it to the same volume, but makes it clip in places
for i, audio in enumerate(audios):
audio = audio[:mel_lens[i].item() * stft_hop_length]
audio = audio.cpu().numpy()
audio = audio * 32768.0
audio = audio.astype('int16')
output = linesBatch[i][4]
if useCleanup:
ffmpeg_path = f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
write(output.replace(".wav", "_preSR.wav"), sampling_rate, audio)
else:
write(output.replace(".wav", "_preCleanupPreFFmpeg.wav"), sampling_rate, audio)
stream = ffmpeg.input(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = output.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
write(output.replace(".wav", "_preSR.wav") if useSR else output, sampling_rate, audio)
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(output.replace(".wav", "_preSR.wav"), output.replace(".wav", "_preCleanup.wav") if useCleanup else output)
os.remove(output.replace(".wav", "_preSR.wav"))
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(output.replace(".wav", "_preCleanup.wav"), output)
os.remove(output.replace(".wav", "_preCleanup.wav"))
if outputJSON:
for ri, record in enumerate(linesBatch):
# linesBatch: sequence, pitch, duration, pace, tempFileLocation, outPath, outFolder
output_fname = linesBatch[ri][5].replace(".wav", ".json")
containing_folder = "/".join(output_fname.split("/")[:-1])
os.makedirs(containing_folder, exist_ok=True)
with open(output_fname, "w+") as f:
data = {}
data["inputSequence"] = str(linesBatch[ri][0])
data["pacing"] = float(linesBatch[ri][3])
data["letters"] = [char.replace("{", "").replace("}", "") for char in list(cleaned_text_sequences[ri].split("|"))]
data["currentVoice"] = self.ckpt_path.split("/")[-1].replace(".pt", "")
data["resetEnergy"] = [float(val) for val in list(energy_pred[ri].cpu().detach().numpy())]
data["resetPitch"] = [float(val) for val in list(pitch_pred[ri][0].cpu().detach().numpy())]
data["resetDurs"] = [float(val) for val in list(dur_pred[ri].cpu().detach().numpy())]
data["ampFlatCounter"] = 0
data["pitchNew"] = data["resetPitch"]
data["energyNew"] = data["resetEnergy"]
data["dursNew"] = data["resetDurs"]
f.write(json.dumps(data, indent=4))
del mel, mel_lens
return ""
def infer(self, plugin_manager, text, output, vocoder, speaker_i, pace=1.0, editor_data=None, old_sequence=None, globalAmplitudeModifier=None, base_lang=None, base_emb=None, useSR=False, useCleanup=False):
sigma_infer = 0.9
stft_hop_length = 256
sampling_rate = 22050
denoising_strength = 0.01
text = re.sub(r'[^a-zA-ZäöüÄÖÜß_\s\(\)\[\]0-9\?\.\,\!\'\{\}\-]+', '', text)
text = self.infer_arpabet_dict(text, plugin_manager)
text = text.replace("(", "").replace(")", "")
text = re.sub(r'[^a-zA-ZäöüÄÖÜß\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', text)
sequence = text_to_sequence(text, "english_basic", ['english_cleaners'])
cleaned_text = sequence_to_text("english_basic", sequence)
text = torch.LongTensor(sequence)
text = pad_sequence([text], batch_first=True).to(self.models_manager.device)
with torch.no_grad():
if old_sequence is not None:
old_sequence = re.sub(r'[^a-zA-Z\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', old_sequence)
old_sequence = text_to_sequence(old_sequence, "english_basic", ['english_cleaners'])
old_sequence = torch.LongTensor(old_sequence)
old_sequence = pad_sequence([old_sequence], batch_first=True).to(self.models_manager.device)
mel, mel_lens, dur_pred, pitch_pred, energy_pred, start_index, end_index = self.model.infer_advanced(self.logger, plugin_manager, [cleaned_text], text, speaker_i=speaker_i, pace=pace, pitch_data=editor_data, old_sequence=old_sequence)
if "waveglow" in vocoder:
self.models_manager.init_model(vocoder)
audios = self.models_manager.models(vocoder).model.infer(mel, sigma=sigma_infer)
audios = self.models_manager.models(vocoder).denoiser(audios.float(), strength=denoising_strength).squeeze(1)
for i, audio in enumerate(audios):
audio = audio[:mel_lens[i].item() * stft_hop_length]
audio = audio/torch.max(torch.abs(audio))
write(output, sampling_rate, audio.cpu().numpy())
del audios
else:
self.models_manager.load_model("hifigan", f'{"./resources/app" if self.PROD else "."}/python/hifigan/hifi.pt' if vocoder=="qnd" else self.ckpt_path.replace(".pt", ".hg.pt"))
y_g_hat = self.models_manager.models("hifigan").model(mel)
audio = y_g_hat.squeeze()
audio = audio * 32768.0
# audio = audio * 2.3026 # This brings it to the same volume, but makes it clip in places
audio = audio.cpu().numpy().astype('int16')
if useCleanup:
ffmpeg_path = f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
write(output.replace(".wav", "_preSR.wav"), sampling_rate, audio)
else:
write(output.replace(".wav", "_preCleanupPreFFmpeg.wav"), sampling_rate, audio)
stream = ffmpeg.input(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = output.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
write(output.replace(".wav", "_preSR.wav") if useSR else output, sampling_rate, audio)
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(output.replace(".wav", "_preSR.wav"), output.replace(".wav", "_preCleanup.wav") if useCleanup else output)
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(output.replace(".wav", "_preCleanup.wav"), output)
del audio
del mel, mel_lens
[pitch, durations, energy] = [pitch_pred.squeeze().cpu().detach().numpy(), dur_pred.cpu().detach().numpy()[0], energy_pred.cpu().detach().numpy()[0] if energy_pred is not None else []]
[em_angry, em_happy, em_sad, em_surprise] = [[],[],[],[]]
pitch_durations_energy_text = ",".join([str(v) for v in pitch]) + "\n" + \
",".join([str(v) for v in durations]) + "\n" + \
",".join([str(v) for v in energy]) + "\n" + \
",".join([str(v) for v in em_angry]) + "\n" + \
",".join([str(v) for v in em_happy]) + "\n" + \
",".join([str(v) for v in em_sad]) + "\n" + \
",".join([str(v) for v in em_surprise]) + "\n" + "{"+"}"
del pitch_pred, dur_pred, energy_pred, text, sequence
return pitch_durations_energy_text +"\n"+cleaned_text +"\n"+ f'{start_index}\n{end_index}'
def set_device (self, device):
self.device = device
self.model = self.model.to(device)
self.model.device = device
def run_speech_to_speech (self, audiopath, models_manager, plugin_manager, modelType, s2s_components, text):
return self.model.run_speech_to_speech(self.device, self.logger, models_manager, plugin_manager, modelType, s2s_components, audiopath, text, text_to_sequence, sequence_to_text, self)
|