Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,950 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import sys
from typing import Optional
from os.path import abspath, dirname
import torch
# enabling modules discovery from global entrypoint
sys.path.append(abspath(dirname(__file__)+'/'))
from python.fastpitch.fastpitch import FastPitch as _FastPitch
# from python.model_fp import WaveGlow
def parse_model_args(model_name, symbols_alphabet, parser, add_help=False):
from python.fastpitch.arg_parser import parse_fastpitch_args
return parse_fastpitch_args(symbols_alphabet, parser, add_help)
def batchnorm_to_float(module):
"""Converts batch norm to FP32"""
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.float()
for child in module.children():
batchnorm_to_float(child)
return module
def init_bn(module):
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
if module.affine:
module.weight.data.uniform_()
for child in module.children():
init_bn(child)
def get_model(model_name, model_config, device, logger, uniform_initialize_bn_weight=False, forward_is_infer=False, jitable=False):
model = None
model_config["device"] = device
if model_name == 'WaveGlow':
if forward_is_infer:
class WaveGlow__forward_is_infer(WaveGlow):
def forward(self, spect, sigma=1.0):
return self.infer(spect, sigma)
model = WaveGlow__forward_is_infer(**model_config, logger=logger)
else:
model = WaveGlow(**model_config, logger=logger)
elif model_name == 'FastPitch':
model_config["padding_idx"] = 0
model_config["pitch_embedding_kernel_size"] = 3
model_config["n_speakers"] = 5
model_config["speaker_emb_weight"] = 1.0
if forward_is_infer:
class FastPitch__forward_is_infer(_FastPitch):
def forward(self, inputs, input_lengths=None, pace: float = 1.0,
dur_tgt: Optional[torch.Tensor] = None,
pitch_tgt: Optional[torch.Tensor] = None,
pitch_transform=None, device=None):
return self.infer_advanced(inputs, input_lengths, pace=pace,
dur_tgt=dur_tgt, pitch_tgt=pitch_tgt,
pitch_transform=pitch_transform)
model = FastPitch__forward_is_infer(**model_config)
else:
model = _FastPitch(**model_config)
else:
raise NotImplementedError(model_name)
if uniform_initialize_bn_weight:
init_bn(model)
return model.to(device)
def get_model_config(model_name, args):
if model_name == 'WaveGlow':
model_config = dict(
n_mel_channels=args.n_mel_channels,
n_flows=args.flows,
n_group=args.groups,
n_early_every=args.early_every,
n_early_size=args.early_size,
WN_config=dict(
n_layers=args.wn_layers,
kernel_size=args.wn_kernel_size,
n_channels=args.wn_channels
)
)
return model_config
elif model_name == 'FastPitch':
model_config = dict(
# io
n_mel_channels=args.n_mel_channels,
max_seq_len=args.max_seq_len,
# symbols
n_symbols=args.n_symbols,
symbols_embedding_dim=args.symbols_embedding_dim,
# input FFT
in_fft_n_layers=args.in_fft_n_layers,
in_fft_n_heads=args.in_fft_n_heads,
in_fft_d_head=args.in_fft_d_head,
in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size,
in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size,
in_fft_output_size=args.in_fft_output_size,
p_in_fft_dropout=args.p_in_fft_dropout,
p_in_fft_dropatt=args.p_in_fft_dropatt,
p_in_fft_dropemb=args.p_in_fft_dropemb,
# output FFT
out_fft_n_layers=args.out_fft_n_layers,
out_fft_n_heads=args.out_fft_n_heads,
out_fft_d_head=args.out_fft_d_head,
out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size,
out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size,
out_fft_output_size=args.out_fft_output_size,
p_out_fft_dropout=args.p_out_fft_dropout,
p_out_fft_dropatt=args.p_out_fft_dropatt,
p_out_fft_dropemb=args.p_out_fft_dropemb,
# duration predictor
dur_predictor_kernel_size=args.dur_predictor_kernel_size,
dur_predictor_filter_size=args.dur_predictor_filter_size,
p_dur_predictor_dropout=args.p_dur_predictor_dropout,
dur_predictor_n_layers=args.dur_predictor_n_layers,
# pitch predictor
pitch_predictor_kernel_size=args.pitch_predictor_kernel_size,
pitch_predictor_filter_size=args.pitch_predictor_filter_size,
p_pitch_predictor_dropout=args.p_pitch_predictor_dropout,
pitch_predictor_n_layers=args.pitch_predictor_n_layers,
)
return model_config
else:
raise NotImplementedError(model_name)
|