File size: 6,950 Bytes
19c8b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

import sys
from typing import Optional
from os.path import abspath, dirname

import torch

# enabling modules discovery from global entrypoint
sys.path.append(abspath(dirname(__file__)+'/'))
from python.fastpitch.fastpitch import FastPitch as _FastPitch
# from python.model_fp import WaveGlow


def parse_model_args(model_name, symbols_alphabet, parser, add_help=False):
    from python.fastpitch.arg_parser import parse_fastpitch_args
    return parse_fastpitch_args(symbols_alphabet, parser, add_help)

def batchnorm_to_float(module):
    """Converts batch norm to FP32"""
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
        module.float()
    for child in module.children():
        batchnorm_to_float(child)
    return module


def init_bn(module):
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
        if module.affine:
            module.weight.data.uniform_()
    for child in module.children():
        init_bn(child)


def get_model(model_name, model_config, device, logger, uniform_initialize_bn_weight=False, forward_is_infer=False, jitable=False):
    model = None
    model_config["device"] = device

    if model_name == 'WaveGlow':
        if forward_is_infer:
            class WaveGlow__forward_is_infer(WaveGlow):
                def forward(self, spect, sigma=1.0):
                    return self.infer(spect, sigma)
            model = WaveGlow__forward_is_infer(**model_config, logger=logger)
        else:
            model = WaveGlow(**model_config, logger=logger)

    elif model_name == 'FastPitch':

        model_config["padding_idx"] = 0
        model_config["pitch_embedding_kernel_size"] = 3
        model_config["n_speakers"] = 5
        model_config["speaker_emb_weight"] = 1.0

        if forward_is_infer:

            class FastPitch__forward_is_infer(_FastPitch):
                def forward(self, inputs, input_lengths=None, pace: float = 1.0,
                            dur_tgt: Optional[torch.Tensor] = None,
                            pitch_tgt: Optional[torch.Tensor] = None,
                            pitch_transform=None, device=None):
                    return self.infer_advanced(inputs, input_lengths, pace=pace,
                                      dur_tgt=dur_tgt, pitch_tgt=pitch_tgt,
                                      pitch_transform=pitch_transform)

            model = FastPitch__forward_is_infer(**model_config)
        else:
            model = _FastPitch(**model_config)

    else:
        raise NotImplementedError(model_name)

    if uniform_initialize_bn_weight:
        init_bn(model)

    return model.to(device)


def get_model_config(model_name, args):
    if model_name == 'WaveGlow':
        model_config = dict(
            n_mel_channels=args.n_mel_channels,
            n_flows=args.flows,
            n_group=args.groups,
            n_early_every=args.early_every,
            n_early_size=args.early_size,
            WN_config=dict(
                n_layers=args.wn_layers,
                kernel_size=args.wn_kernel_size,
                n_channels=args.wn_channels
            )
        )
        return model_config
    elif model_name == 'FastPitch':
        model_config = dict(
            # io
            n_mel_channels=args.n_mel_channels,
            max_seq_len=args.max_seq_len,
            # symbols
            n_symbols=args.n_symbols,
            symbols_embedding_dim=args.symbols_embedding_dim,
            # input FFT
            in_fft_n_layers=args.in_fft_n_layers,
            in_fft_n_heads=args.in_fft_n_heads,
            in_fft_d_head=args.in_fft_d_head,
            in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size,
            in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size,
            in_fft_output_size=args.in_fft_output_size,
            p_in_fft_dropout=args.p_in_fft_dropout,
            p_in_fft_dropatt=args.p_in_fft_dropatt,
            p_in_fft_dropemb=args.p_in_fft_dropemb,
            # output FFT
            out_fft_n_layers=args.out_fft_n_layers,
            out_fft_n_heads=args.out_fft_n_heads,
            out_fft_d_head=args.out_fft_d_head,
            out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size,
            out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size,
            out_fft_output_size=args.out_fft_output_size,
            p_out_fft_dropout=args.p_out_fft_dropout,
            p_out_fft_dropatt=args.p_out_fft_dropatt,
            p_out_fft_dropemb=args.p_out_fft_dropemb,
            # duration predictor
            dur_predictor_kernel_size=args.dur_predictor_kernel_size,
            dur_predictor_filter_size=args.dur_predictor_filter_size,
            p_dur_predictor_dropout=args.p_dur_predictor_dropout,
            dur_predictor_n_layers=args.dur_predictor_n_layers,
            # pitch predictor
            pitch_predictor_kernel_size=args.pitch_predictor_kernel_size,
            pitch_predictor_filter_size=args.pitch_predictor_filter_size,
            p_pitch_predictor_dropout=args.p_pitch_predictor_dropout,
            pitch_predictor_n_layers=args.pitch_predictor_n_layers,
        )
        return model_config

    else:
        raise NotImplementedError(model_name)