Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 19,265 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import math
import torch
from torch import nn
from torch.nn import functional as F
# from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-4):
"""Layer norm for the 2nd dimension of the input.
Args:
channels (int): number of channels (2nd dimension) of the input.
eps (float): to prevent 0 division
Shapes:
- input: (B, C, T)
- output: (B, C, T)
"""
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1)
self.beta = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x):
mean = torch.mean(x, 1, keepdim=True)
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
x = (x - mean) * torch.rsqrt(variance + self.eps)
x = x * self.gamma + self.beta
return x
class LayerNorm2(nn.Module):
"""Layer norm for the 2nd dimension of the input using torch primitive.
Args:
channels (int): number of channels (2nd dimension) of the input.
eps (float): to prevent 0 division
Shapes:
- input: (B, C, T)
- output: (B, C, T)
"""
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = torch.nn.functional.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class RelativePositionMultiHeadAttention(nn.Module):
"""Multi-head attention with Relative Positional embedding.
https://arxiv.org/pdf/1809.04281.pdf
It learns positional embeddings for a window of neighbours. For keys and values,
it learns different set of embeddings. Key embeddings are agregated with the attention
scores and value embeddings are aggregated with the output.
Note:
Example with relative attention window size 2
- input = [a, b, c, d, e]
- rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)]
So it learns 4 embedding vectors (in total 8) separately for key and value vectors.
Considering the input c
- e(t-2) corresponds to c -> a
- e(t-2) corresponds to c -> b
- e(t-2) corresponds to c -> d
- e(t-2) corresponds to c -> e
These embeddings are shared among different time steps. So input a, b, d and e also uses
the same embeddings.
Embeddings are ignored when the relative window is out of limit for the first and the last
n items.
Args:
channels (int): input and inner layer channels.
out_channels (int): output channels.
num_heads (int): number of attention heads.
rel_attn_window_size (int, optional): relation attention window size.
If 4, for each time step next and previous 4 time steps are attended.
If default, relative encoding is disabled and it is a regular transformer.
Defaults to None.
heads_share (bool, optional): [description]. Defaults to True.
dropout_p (float, optional): dropout rate. Defaults to 0..
input_length (int, optional): intput length for positional encoding. Defaults to None.
proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False.
proximal_init (bool, optional): enable/disable poximal init as in the paper.
Init key and query layer weights the same. Defaults to False.
"""
def __init__(
self,
channels,
out_channels,
num_heads,
rel_attn_window_size=None,
heads_share=True,
dropout_p=0.0,
input_length=None,
proximal_bias=False,
proximal_init=False,
):
super().__init__()
assert channels % num_heads == 0, " [!] channels should be divisible by num_heads."
# class attributes
self.channels = channels
self.out_channels = out_channels
self.num_heads = num_heads
self.rel_attn_window_size = rel_attn_window_size
self.heads_share = heads_share
self.input_length = input_length
self.proximal_bias = proximal_bias
self.dropout_p = dropout_p
self.attn = None
# query, key, value layers
self.k_channels = channels // num_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
# output layers
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.dropout = nn.Dropout(dropout_p)
# relative positional encoding layers
if rel_attn_window_size is not None:
n_heads_rel = 1 if heads_share else num_heads
rel_stddev = self.k_channels ** -0.5
emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
)
emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
)
self.register_parameter("emb_rel_k", emb_rel_k)
self.register_parameter("emb_rel_v", emb_rel_v)
# init layers
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
# proximal bias
if proximal_init:
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
nn.init.xavier_uniform_(self.conv_v.weight)
def forward(self, x, c, attn_mask=None):
"""
Shapes:
- x: :math:`[B, C, T]`
- c: :math:`[B, C, T]`
- attn_mask: :math:`[B, 1, T, T]`
"""
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
# compute raw attention scores
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
# relative positional encoding for scores
if self.rel_attn_window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
# get relative key embeddings
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
rel_logits = self._relative_position_to_absolute_position(rel_logits)
scores_local = rel_logits / math.sqrt(self.k_channels)
scores = scores + scores_local
# proximan bias
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype)
# attention score masking
if mask is not None:
# add small value to prevent oor error.
scores = scores.masked_fill(mask == 0, -1e4)
if self.input_length is not None:
block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length)
scores = scores * block_mask + -1e4 * (1 - block_mask)
# attention score normalization
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
# apply dropout to attention weights
p_attn = self.dropout(p_attn)
# compute output
output = torch.matmul(p_attn, value)
# relative positional encoding for values
if self.rel_attn_window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
@staticmethod
def _matmul_with_relative_values(p_attn, re):
"""
Args:
p_attn (Tensor): attention weights.
re (Tensor): relative value embedding vector. (a_(i,j)^V)
Shapes:
-p_attn: :math:`[B, H, T, V]`
-re: :math:`[H or 1, V, D]`
-logits: :math:`[B, H, T, D]`
"""
logits = torch.matmul(p_attn, re.unsqueeze(0))
return logits
@staticmethod
def _matmul_with_relative_keys(query, re):
"""
Args:
query (Tensor): batch of query vectors. (x*W^Q)
re (Tensor): relative key embedding vector. (a_(i,j)^K)
Shapes:
- query: :math:`[B, H, T, D]`
- re: :math:`[H or 1, V, D]`
- logits: :math:`[B, H, T, V]`
"""
# logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)])
logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1))
return logits
def _get_relative_embeddings(self, relative_embeddings, length):
"""Convert embedding vestors to a tensor of embeddings"""
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.rel_attn_window_size + 1), 0)
slice_start_position = max((self.rel_attn_window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
return used_relative_embeddings
@staticmethod
def _relative_position_to_absolute_position(x):
"""Converts tensor from relative to absolute indexing for local attention.
Shapes:
x: :math:`[B, C, T, 2 * T - 1]`
Returns:
A Tensor of shape :math:`[B, C, T, T]`
"""
batch, heads, length, _ = x.size()
# Pad to shift from relative to absolute indexing.
x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0])
# Pad extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
return x_final
@staticmethod
def _absolute_position_to_relative_position(x):
"""
Shapes:
- x: :math:`[B, C, T, T]`
- ret: :math:`[B, C, T, 2*T-1]`
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
@staticmethod
def _attn_proximity_bias(length):
"""Produce an attention mask that discourages distant
attention values.
Args:
length (int): an integer scalar.
Returns:
a Tensor with shape :math:`[1, 1, T, T]`
"""
# L
r = torch.arange(length, dtype=torch.float32)
# L x L
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
# scale mask values
diff = -torch.log1p(torch.abs(diff))
# 1 x 1 x L x L
return diff.unsqueeze(0).unsqueeze(0)
class FeedForwardNetwork(nn.Module):
"""Feed Forward Inner layers for Transformer.
Args:
in_channels (int): input tensor channels.
out_channels (int): output tensor channels.
hidden_channels (int): inner layers hidden channels.
kernel_size (int): conv1d filter kernel size.
dropout_p (float, optional): dropout rate. Defaults to 0.
"""
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dropout_p = dropout_p
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size)
self.conv_2 = nn.Conv1d(hidden_channels, out_channels, kernel_size)
self.dropout = nn.Dropout(dropout_p)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
x = torch.relu(x)
x = self.dropout(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, self._pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, self._pad_shape(padding))
return x
@staticmethod
def _pad_shape(padding):
l = padding[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
class RelativePositionTransformer(nn.Module):
"""Transformer with Relative Potional Encoding.
https://arxiv.org/abs/1803.02155
Args:
in_channels (int): number of channels of the input tensor.
out_chanels (int): number of channels of the output tensor.
hidden_channels (int): model hidden channels.
hidden_channels_ffn (int): hidden channels of FeedForwardNetwork.
num_heads (int): number of attention heads.
num_layers (int): number of transformer layers.
kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1.
dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0.
rel_attn_window_size (int, optional): relation attention window size.
If 4, for each time step next and previous 4 time steps are attended.
If default, relative encoding is disabled and it is a regular transformer.
Defaults to None.
input_length (int, optional): input lenght to limit position encoding. Defaults to None.
layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm
primitive. Use type "2", type "1: is for backward compat. Defaults to "1".
"""
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
hidden_channels_ffn: int,
num_heads: int,
num_layers: int,
kernel_size=1,
dropout_p=0.0,
rel_attn_window_size: int = None,
input_length: int = None,
layer_norm_type: str = "1",
):
super().__init__()
self.hidden_channels = hidden_channels
self.hidden_channels_ffn = hidden_channels_ffn
self.num_heads = num_heads
self.num_layers = num_layers
self.kernel_size = kernel_size
self.dropout_p = dropout_p
self.rel_attn_window_size = rel_attn_window_size
self.out_channels = out_channels
self.dropout = nn.Dropout(dropout_p)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for idx in range(self.num_layers):
self.attn_layers.append(
RelativePositionMultiHeadAttention(
hidden_channels if idx != 0 else in_channels,
hidden_channels,
num_heads,
rel_attn_window_size=rel_attn_window_size,
dropout_p=dropout_p,
input_length=input_length,
)
)
if layer_norm_type == "1":
self.norm_layers_1.append(LayerNorm(hidden_channels))
elif layer_norm_type == "2":
self.norm_layers_1.append(LayerNorm2(hidden_channels))
else:
raise ValueError(" [!] Unknown layer norm type")
if hidden_channels != out_channels and (idx + 1) == self.num_layers:
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.ffn_layers.append(
FeedForwardNetwork(
hidden_channels,
hidden_channels if (idx + 1) != self.num_layers else out_channels,
hidden_channels_ffn,
kernel_size,
dropout_p=dropout_p,
)
)
if layer_norm_type == "1":
self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels))
elif layer_norm_type == "2":
self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels))
else:
raise ValueError(" [!] Unknown layer norm type")
def forward(self, x, x_mask):
"""
Shapes:
- x: :math:`[B, C, T]`
- x_mask: :math:`[B, 1, T]`
"""
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
for i in range(self.num_layers):
x = x * x_mask
y = self.attn_layers[i](x, x, attn_mask)
y = self.dropout(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.dropout(y)
if (i + 1) == self.num_layers and hasattr(self, "proj"):
x = self.proj(x)
if self.out_channels!=1 or i!=(self.num_layers-1):
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
|