File size: 8,289 Bytes
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
825e9be
 
 
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86930e3
 
 
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
940228d
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366c294
 
2ad24b2
 
86930e3
 
 
 
 
 
 
 
2ad24b2
 
 
 
 
366c294
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477ec86
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477ec86
2ad24b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys
import traceback
import multiprocessing
import json

torch_dml_device = None

multiprocessing.freeze_support()

# PROD = 'xVASynth.exe' in os.listdir(".")
PROD = True
sys.path.append("./resources/app")
sys.path.append("./resources/app/python")
sys.path.append("./resources/app/deepmoji_plugin")

# Saves me having to do backend re-compilations for every little UI hotfix
with open(f'{"./resources/app" if PROD else "."}/javascript/script.js', encoding="utf8") as f:
    lines = f.read().split("\n")
    APP_VERSION = lines[1].split('"v')[1].split('"')[0]

# Imports and logger setup
# ========================
try:
    # import python.pyinstaller_imports
    import numpy

    import logging
    from logging.handlers import RotatingFileHandler
    import json
    # from socketserver     import ThreadingMixIn
    # from python.audio_post import run_audio_post, prepare_input_audio, mp_ffmpeg_output, normalize_audio, start_microphone_recording, move_recorded_file
    # import ffmpeg
except:
    print(traceback.format_exc())
    with open("./DEBUG_err_imports.txt", "w+") as f:
        f.write(traceback.format_exc())

# Pyinstaller hack
# ================
try:
    def script_method(fn, _rcb=None):
        return fn
    def script(obj, optimize=True, _frames_up=0, _rcb=None):
        return obj
    import torch.jit
    torch.jit.script_method = script_method
    torch.jit.script = script
    import torch
    import tqdm
    import regex
except:
    print(traceback.format_exc())
    with open("./DEBUG_err_import_torch.txt", "w+") as f:
        f.write(traceback.format_exc())
# ================
# CPU_ONLY = not torch.cuda.is_available()
CPU_ONLY = True

try:
    logger = logging.getLogger('serverLog')
    logger.setLevel(logging.DEBUG)
    server_log_path = f'{os.path.dirname(os.path.realpath(__file__))}/{"../../../" if PROD else ""}/server.log'
    fh = RotatingFileHandler(server_log_path, maxBytes=2*1024*1024, backupCount=5)
    fh.setLevel(logging.DEBUG)
    ch = logging.StreamHandler()
    ch.setLevel(logging.ERROR)
    formatter = logging.Formatter('%(asctime)s - %(message)s')
    fh.setFormatter(formatter)
    ch.setFormatter(formatter)
    logger.addHandler(fh)
    logger.addHandler(ch)
    logger.info(f'New session. Version: {APP_VERSION}. Installation: {"CPU" if CPU_ONLY else "CPU+GPU"} | Prod: {PROD} | Log path: {server_log_path}')

    logger.orig_info = logger.info

    def prefixed_log (msg):
        logger.info(f'{logger.logging_prefix}{msg}')


    def set_logger_prefix (prefix=""):
        if len(prefix):
            logger.logging_prefix = f'[{prefix}]: '
            logger.log = prefixed_log
        else:
            logger.log = logger.orig_info

    logger.set_logger_prefix = set_logger_prefix
    logger.set_logger_prefix("")

except:
    with open("./DEBUG_err_logger.txt", "w+") as f:
        f.write(traceback.format_exc())
    try:
        logger.info(traceback.format_exc())
    except:
        pass

if CPU_ONLY:
    torch_dml_device = torch.device("cpu")


# try:
from python.plugins_manager import PluginManager
plugin_manager = PluginManager(APP_VERSION, PROD, CPU_ONLY, logger)
active_plugins = plugin_manager.get_active_plugins_count()
logger.info(f'Plugin manager loaded. {active_plugins} active plugins.')
# except:
#     logger.info("Plugin manager FAILED.")
#     logger.info(traceback.format_exc())

plugin_manager.run_plugins(plist=plugin_manager.plugins["start"]["pre"], event="pre start", data=None)


# ======================== Models manager
modelsPaths = {}
try:
    from python.models_manager import ModelsManager
    models_manager = ModelsManager(logger, PROD, device="cpu")
except:
    logger.info("Models manager failed to initialize")
    logger.info(traceback.format_exc())
# ========================



print("Models ready")
logger.info("Models ready")


post_data = ""
def loadModel(post_data):
    req_response = {}
    logger.info("Direct: loadModel")
    logger.info(post_data)
    ckpt = post_data["model"]
    modelType = post_data["modelType"]
    instance_index = post_data["instance_index"] if "instance_index" in post_data else 0
    modelType = modelType.lower().replace(".", "_").replace(" ", "")
    post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
    n_speakers = post_data["model_speakers"] if "model_speakers" in post_data else None
    base_lang = post_data["base_lang"] if "base_lang" in post_data else None


    plugin_manager.run_plugins(plist=plugin_manager.plugins["load-model"]["pre"], event="pre load-model", data=post_data)
    models_manager.load_model(modelType, ckpt+".pt", instance_index=instance_index, n_speakers=n_speakers, base_lang=base_lang)
    plugin_manager.run_plugins(plist=plugin_manager.plugins["load-model"]["post"], event="post load-model", data=post_data)

    if modelType=="fastpitch1_1":
        models_manager.models_bank["fastpitch1_1"][instance_index].init_arpabet_dicts()

    return req_response

def synthesize(post_data):
    req_response = {}
    logger.info("Direct: synthesize")
    post_data["pluginsContext"] = json.loads(post_data["pluginsContext"])
    instance_index = post_data["instance_index"] if "instance_index" in post_data else 0


    # Handle the case where the vocoder remains selected on app start-up, with auto-HiFi turned off, but no setVocoder call is made before synth
    continue_synth = True
    if "waveglow" in post_data["vocoder"]:
        waveglowPath = post_data["waveglowPath"]
        req_response = models_manager.load_model(post_data["vocoder"], waveglowPath, instance_index=instance_index)
        if req_response=="ENOENT":
            continue_synth = False

    device = post_data["device"] if "device" in post_data else models_manager.device_label
    device = torch.device("cpu") if device=="cpu" else (torch_dml_device if CPU_ONLY else torch.device("cuda:0"))
    models_manager.set_device(device, instance_index=instance_index)

    if continue_synth:
        plugin_manager.set_context(post_data["pluginsContext"])
        plugin_manager.run_plugins(plist=plugin_manager.plugins["synth-line"]["pre"], event="pre synth-line", data=post_data)

        modelType = post_data["modelType"]
        text = post_data["sequence"]
        pace = float(post_data["pace"])
        out_path = post_data["outfile"]
        base_lang = post_data["base_lang"] if "base_lang" in post_data else None
        base_emb = post_data["base_emb"] if "base_emb" in post_data else None
        pitch = post_data["pitch"] if "pitch" in post_data else None
        energy = post_data["energy"] if "energy" in post_data else None
        emAngry = post_data["emAngry"] if "emAngry" in post_data else None
        emHappy = post_data["emHappy"] if "emHappy" in post_data else None
        emSad = post_data["emSad"] if "emSad" in post_data else None
        emSurprise = post_data["emSurprise"] if "emSurprise" in post_data else None
        editorStyles = post_data["editorStyles"] if "editorStyles" in post_data else None
        duration = post_data["duration"] if "duration" in post_data else None
        speaker_i = post_data["speaker_i"] if "speaker_i" in post_data else None
        useSR = post_data["useSR"] if "useSR" in post_data else None
        useCleanup = post_data["useCleanup"] if "useCleanup" in post_data else None
        vocoder = post_data["vocoder"]
        globalAmplitudeModifier = float(post_data["globalAmplitudeModifier"]) if "globalAmplitudeModifier" in post_data else None
        editor_data = [pitch, duration, energy, emAngry, emHappy, emSad, emSurprise, editorStyles]
        old_sequence = post_data["old_sequence"] if "old_sequence" in post_data else None

        model = models_manager.models(modelType.lower().replace(".", "_").replace(" ", ""), instance_index=instance_index)
        req_response = model.infer(plugin_manager, text, out_path, vocoder=vocoder, \
            speaker_i=speaker_i, editor_data=editor_data, pace=pace, old_sequence=old_sequence, \
            globalAmplitudeModifier=globalAmplitudeModifier, base_lang=base_lang, base_emb=base_emb, useSR=useSR, useCleanup=useCleanup)

        plugin_manager.run_plugins(plist=plugin_manager.plugins["synth-line"]["post"], event="post synth-line", data=post_data)

    return req_response