Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,703 Bytes
19c8b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import shutil
import ffmpeg
import traceback
import subprocess
from pydub import AudioSegment
from lib.ffmpeg_normalize._ffmpeg_normalize import FFmpegNormalize
import platform
import multiprocessing as mp
def mp_ffmpeg_output (PROD, logger, processes, input_paths, output_paths, options):
workItems = []
for ip, path in enumerate(input_paths):
workItems.append([PROD, None, path, output_paths[ip], options])
workers = processes if processes>0 else max(1, mp.cpu_count()-1)
workers = min(len(workItems), workers)
# logger.info("[mp ffmpeg] workers: "+str(workers))
pool = mp.Pool(workers)
results = pool.map(processingTask, workItems)
pool.close()
pool.join()
return "\n".join(results)
def processingTask(data):
return run_audio_post(data[0], data[1], data[2], data[3], data[4]).replace("\n", "<br>")
def run_audio_post(PROD, logger, input, output, options=None):
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if PROD else "."}/python/ffmpeg.exe'
try:
stream = ffmpeg.input(input)
ffmpeg_options = {"ar": options["hz"]}
ffmpeg_options["af"] = []
if options["padStart"]:
ffmpeg_options["af"].append(f'adelay={options["padStart"]}')
if options["padEnd"]:
ffmpeg_options["af"].append(f'apad=pad_dur={options["padEnd"]}ms')
# Pitch
hz = 48000 if ("useSR" in options.keys() and options["useSR"] or "useCleanup" in options.keys() and options["useCleanup"]) else 22050
ffmpeg_options["af"].append(f'asetrate={hz*(options["pitchMult"])},atempo=1/{options["pitchMult"]}')
# Tempo
ffmpeg_options["af"].append(f'atempo={options["tempo"]}')
ffmpeg_options["af"].append(f'volume={options["amplitude"]}')
ffmpeg_options["af"].append("adeclip,adeclick")
if "useNR" in options.keys() and options["useNR"]:
ffmpeg_options["af"].append(f'afftdn=nr={options["nr"]}:nf={options["nf"]}:tn=0')
ffmpeg_options["af"] = ",".join(ffmpeg_options["af"])
if options["bit_depth"]:
ffmpeg_options["acodec"] = options["bit_depth"]
if "mp3" in output:
ffmpeg_options["c:a"] = "libmp3lame"
if os.path.exists(output):
try:
os.remove(output)
except:
pass
output_path = output.replace(".wav", "_temp.wav") if "deessing" in options and options["deessing"]>0 else output
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
# The "filter_complex" option can't be used in the same stream as the normal "filter", so have to do two ffmpeg runs
if "deessing" in options and options["deessing"]>0:
stream = ffmpeg.input(output_path)
ffmpeg_options = {}
ffmpeg_options["filter_complex"] = f'deesser=i={options["deessing"]}:m=0.5:f=0.5:s=o'
stream = ffmpeg.output(stream, output, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
try:
os.remove(output_path)
except:
pass
except ffmpeg.Error as e:
if logger!=None:
logger.info("ffmpeg err: "+ e.stderr.decode('utf8'))
return e.stderr.decode('utf8')
except:
if logger!=None:
logger.info(traceback.format_exc())
return traceback.format_exc().replace("\n", " ")
return "-"
def prepare (PROD, logger, inputPath, outputPath, removeNoise, removeNoiseStrength):
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if PROD else "."}/python/ffmpeg.exe'
try:
stream = ffmpeg.input(inputPath)
ffmpeg_options = {"ar": 22050, "ac": 1}
stream = ffmpeg.output(stream, outputPath, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
# Remove silence if a silence clip has been provided
if removeNoise and os.path.exists(f'{"./resources/app" if PROD else "."}/output/silence.wav'):
startupinfo = subprocess.STARTUPINFO()
startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
# Create a silence noise profile if one does not yet exist
if not os.path.exists(f'{"./resources/app" if PROD else "."}/output/noise_profile_file'):
command = f'sox {"./resources/app" if PROD else "."}/output/silence.wav -n noiseprof {"./resources/app" if PROD else "."}/output/noise_profile_file'
sox = subprocess.Popen(command, startupinfo=startupinfo, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# sox.stdout.close()
stdout, stderr = sox.communicate()
stderr = stderr.decode("utf-8")
if len(stderr):
logger.info(f'SOX Command: {command}')
logger.info(f'SOX ERROR: {stderr}')
return outputPath
# Remove the background noise
command = f'sox {outputPath} {outputPath.split(".wav")[0]}_sil.wav noisered {"./resources/app" if PROD else "."}/output/noise_profile_file {removeNoiseStrength}'
sox = subprocess.Popen(command, startupinfo=startupinfo, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = sox.communicate()
stderr = stderr.decode("utf-8")
if len(stderr):
logger.info(f'SOX Command: {command}')
logger.info(f'SOX ERROR: {stderr}')
else:
outputPath = f'{outputPath.split(".wav")[0]}_sil.wav'
except ffmpeg.Error as e:
logger.info("[prepare] ffmpeg err: "+ e.stderr.decode('utf8'))
return outputPath
def prepare_input_audio(PROD, logger, path, removeNoise, removeNoiseStrength):
existing_files_dir = "/".join(path.split("/")[:-1])
logger.info("existing_files_dir")
logger.info(existing_files_dir)
existing_files = [fname for fname in os.listdir("/".join(path.split("/")[:-1])) if fname.startswith("recorded_file_")]
logger.info("existing_files")
logger.info(",".join(existing_files))
for file in existing_files:
os.remove(f'{existing_files_dir}/{file}')
output = f'{path.split(".wav")[0]}_prepared.wav'
logger.info(f'output pre prepare: {output}')
output = prepare(PROD, logger, path, output, removeNoise, removeNoiseStrength)
logger.info(f'output post prepare: {output}')
threshold = -40
interval = 1
audio = AudioSegment.from_wav(output)
# break into chunks
chunks = [audio[i:i+interval] for i in range(0, len(audio), interval)]
trimmed_audio = []
for ci, c in enumerate(chunks):
if (c.dBFS == float('-inf') or c.dBFS < threshold):
pass
else:
trimmed_audio = chunks[ci:]
break
combined_sound = sum(trimmed_audio, AudioSegment.empty())
combined_sound = combined_sound.set_frame_rate(22050)
final_path = f'{path.split(".wav")[0]}_post.wav'
combined_sound.export(final_path, format="wav", bitrate=22050) # parameters=["-ac", "1"]
final_path = f'{path.split(".wav")[0]}_post.wav'
# final_path = f'{path.split(".wav")[0]}_prepared.wav'
# logger.info(f'final_path: {final_path}')
return final_path
def normalize_audio (input_path, output_path):
startupinfo = subprocess.STARTUPINFO()
startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
sp = subprocess.Popen(f'ffmpeg-normalize -ar 22050 "{input_path}" -o "{output_path}"', startupinfo=startupinfo, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = sp.communicate()
stderr = stderr.decode("utf-8")
if len(stderr) and "duration of less than 3 seconds" not in stderr:
print("stderr", stderr)
return "stderr: "+ stderr
return ""
# Python based microphone recording (js libs are too buggy)
# https://github.com/egorsmkv/microphone-recorder/blob/master/record.py
import pyaudio
import wave
def start_microphone_recording (logger, models_manager, root_folder):
logger.info(f'start_microphone_recording')
CHUNK = 1024
FORMAT = pyaudio.paInt16 #paInt8
CHANNELS = 1
RATE = 44100 #sample rate
RECORD_SECONDS = 15
WAVE_OUTPUT_FILENAME = f'{root_folder}/output/recorded_file.wav'
if os.path.exists(WAVE_OUTPUT_FILENAME):
os.remove(WAVE_OUTPUT_FILENAME)
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK) #buffer
frames = []
logger.info(f'Starting recording...')
if os.path.exists(f'{root_folder}/python/temp_stop_recording'):
os.remove(f'{root_folder}/python/temp_stop_recording')
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
if os.path.exists(f'{root_folder}/python/temp_stop_recording'):
logger.info(f'Detected stop request. Ending recording...')
os.remove(f'{root_folder}/python/temp_stop_recording')
break
data = stream.read(CHUNK)
frames.append(data) # 2 bytes(16 bits) per channel
stream.stop_stream()
stream.close()
p.terminate()
logger.info(f'Dumping recording audio to file: {WAVE_OUTPUT_FILENAME}')
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()
def move_recorded_file(PROD, logger, models_manager, root_folder, file_path):
if not os.path.exists(f'{root_folder}/output/recorded_file.wav'):
logger.info("Not found audio file")
import time
time.sleep(5)
try:
models_manager.init_model("deepfilternet2")
models_manager.models("deepfilternet2").cleanup_audio(f'{root_folder}/output/recorded_file.wav', f'{root_folder}/output/recorded_file_preCleanup.wav')
# Do audio normalization also
ffmpeg_path = 'ffmpeg' if platform.system() == 'Linux' else f'{"./resources/app" if PROD else "."}/python/ffmpeg.exe'
ffmpeg_normalize = FFmpegNormalize(
normalization_type="ebu",
target_level=-23.0,
print_stats=False,
loudness_range_target=7.0,
true_peak=-2.0,
offset=0.0,
dual_mono=False,
audio_codec=None,
audio_bitrate=None,
sample_rate=22050,
keep_original_audio=False,
pre_filter=None,
post_filter=None,
video_codec="copy",
video_disable=False,
subtitle_disable=False,
metadata_disable=False,
chapters_disable=False,
extra_input_options=[],
extra_output_options=[],
output_format=None,
dry_run=False,
progress=False,
ffmpeg_exe=ffmpeg_path
)
ffmpeg_normalize.ffmpeg_exe = ffmpeg_path
ffmpeg_normalize.add_media_file(f'{root_folder}/output/recorded_file_preCleanup.wav', file_path)
ffmpeg_normalize.run_normalization()
except shutil.SameFileError:
pass
except:
logger.info(traceback.format_exc()) |