Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# ***************************************************************************** | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the NVIDIA CORPORATION nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# ***************************************************************************** | |
import sys | |
from typing import Optional | |
from os.path import abspath, dirname | |
import torch | |
# enabling modules discovery from global entrypoint | |
sys.path.append(abspath(dirname(__file__)+'/')) | |
from python.fastpitch1_1.fastpitch import FastPitch as _FastPitch | |
# from python.model_fp import WaveGlow | |
from python.common.text.symbols import get_symbols, get_pad_idx | |
def parse_model_args(model_name, symbols_alphabet, parser, add_help=False): | |
from python.fastpitch1_1.arg_parser import parse_fastpitch_args | |
return parse_fastpitch_args(symbols_alphabet, parser, add_help) | |
def batchnorm_to_float(module): | |
"""Converts batch norm to FP32""" | |
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): | |
module.float() | |
for child in module.children(): | |
batchnorm_to_float(child) | |
return module | |
def init_bn(module): | |
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): | |
if module.affine: | |
module.weight.data.uniform_() | |
for child in module.children(): | |
init_bn(child) | |
def get_model(model_name, model_config, device, logger, uniform_initialize_bn_weight=False, forward_is_infer=False, jitable=False): | |
model = None | |
model_config["device"] = device | |
if model_name == 'WaveGlow': | |
if forward_is_infer: | |
class WaveGlow__forward_is_infer(WaveGlow): | |
def forward(self, spect, sigma=1.0): | |
return self.infer(spect, sigma) | |
model = WaveGlow__forward_is_infer(**model_config, logger=logger) | |
else: | |
model = WaveGlow(**model_config, logger=logger) | |
elif model_name == 'FastPitch': | |
model_config["padding_idx"] = 0 | |
model_config["pitch_embedding_kernel_size"] = 3 | |
model_config["n_speakers"] = 5 | |
model_config["speaker_emb_weight"] = 1.0 | |
if forward_is_infer: | |
class FastPitch__forward_is_infer(_FastPitch): | |
def forward(self, inputs, input_lengths=None, pace: float = 1.0, | |
dur_tgt: Optional[torch.Tensor] = None, | |
pitch_tgt: Optional[torch.Tensor] = None, | |
pitch_transform=None, device=None): | |
return self.infer_advanced(inputs, input_lengths, pace=pace, | |
dur_tgt=dur_tgt, pitch_tgt=pitch_tgt, | |
pitch_transform=pitch_transform) | |
model = FastPitch__forward_is_infer(**model_config) | |
else: | |
model = _FastPitch(**model_config) | |
else: | |
raise NotImplementedError(model_name) | |
if uniform_initialize_bn_weight: | |
init_bn(model) | |
return model.to(device) | |
def get_model_config(model_name, args): | |
if model_name == 'FastPitch': | |
model_config = dict( | |
# io | |
n_mel_channels=args.n_mel_channels, | |
# symbols | |
n_symbols=len(get_symbols(args.symbol_set)), | |
padding_idx=get_pad_idx(args.symbol_set), | |
symbols_embedding_dim=args.symbols_embedding_dim, | |
# input FFT | |
in_fft_n_layers=args.in_fft_n_layers, | |
in_fft_n_heads=args.in_fft_n_heads, | |
in_fft_d_head=args.in_fft_d_head, | |
in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size, | |
in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size, | |
in_fft_output_size=args.in_fft_output_size, | |
p_in_fft_dropout=args.p_in_fft_dropout, | |
p_in_fft_dropatt=args.p_in_fft_dropatt, | |
p_in_fft_dropemb=args.p_in_fft_dropemb, | |
# output FFT | |
out_fft_n_layers=args.out_fft_n_layers, | |
out_fft_n_heads=args.out_fft_n_heads, | |
out_fft_d_head=args.out_fft_d_head, | |
out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size, | |
out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size, | |
out_fft_output_size=args.out_fft_output_size, | |
p_out_fft_dropout=args.p_out_fft_dropout, | |
p_out_fft_dropatt=args.p_out_fft_dropatt, | |
p_out_fft_dropemb=args.p_out_fft_dropemb, | |
# duration predictor | |
dur_predictor_kernel_size=args.dur_predictor_kernel_size, | |
dur_predictor_filter_size=args.dur_predictor_filter_size, | |
p_dur_predictor_dropout=args.p_dur_predictor_dropout, | |
dur_predictor_n_layers=args.dur_predictor_n_layers, | |
# pitch predictor | |
pitch_predictor_kernel_size=args.pitch_predictor_kernel_size, | |
pitch_predictor_filter_size=args.pitch_predictor_filter_size, | |
p_pitch_predictor_dropout=args.p_pitch_predictor_dropout, | |
pitch_predictor_n_layers=args.pitch_predictor_n_layers, | |
# pitch conditioning | |
pitch_embedding_kernel_size=args.pitch_embedding_kernel_size, | |
# speakers parameters | |
n_speakers=args.n_speakers, | |
speaker_emb_weight=args.speaker_emb_weight, | |
# energy predictor | |
energy_predictor_kernel_size=args.energy_predictor_kernel_size, | |
energy_predictor_filter_size=args.energy_predictor_filter_size, | |
p_energy_predictor_dropout=args.p_energy_predictor_dropout, | |
energy_predictor_n_layers=args.energy_predictor_n_layers, | |
# energy conditioning | |
energy_conditioning=args.energy_conditioning, | |
energy_embedding_kernel_size=args.energy_embedding_kernel_size, | |
) | |
return model_config | |
else: | |
raise NotImplementedError(model_name) | |