Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
# from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2 | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-4): | |
"""Layer norm for the 2nd dimension of the input. | |
Args: | |
channels (int): number of channels (2nd dimension) of the input. | |
eps (float): to prevent 0 division | |
Shapes: | |
- input: (B, C, T) | |
- output: (B, C, T) | |
""" | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1) | |
self.beta = nn.Parameter(torch.zeros(1, channels, 1)) | |
def forward(self, x): | |
mean = torch.mean(x, 1, keepdim=True) | |
variance = torch.mean((x - mean) ** 2, 1, keepdim=True) | |
x = (x - mean) * torch.rsqrt(variance + self.eps) | |
x = x * self.gamma + self.beta | |
return x | |
class LayerNorm2(nn.Module): | |
"""Layer norm for the 2nd dimension of the input using torch primitive. | |
Args: | |
channels (int): number of channels (2nd dimension) of the input. | |
eps (float): to prevent 0 division | |
Shapes: | |
- input: (B, C, T) | |
- output: (B, C, T) | |
""" | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = torch.nn.functional.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
class RelativePositionMultiHeadAttention(nn.Module): | |
"""Multi-head attention with Relative Positional embedding. | |
https://arxiv.org/pdf/1809.04281.pdf | |
It learns positional embeddings for a window of neighbours. For keys and values, | |
it learns different set of embeddings. Key embeddings are agregated with the attention | |
scores and value embeddings are aggregated with the output. | |
Note: | |
Example with relative attention window size 2 | |
- input = [a, b, c, d, e] | |
- rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)] | |
So it learns 4 embedding vectors (in total 8) separately for key and value vectors. | |
Considering the input c | |
- e(t-2) corresponds to c -> a | |
- e(t-2) corresponds to c -> b | |
- e(t-2) corresponds to c -> d | |
- e(t-2) corresponds to c -> e | |
These embeddings are shared among different time steps. So input a, b, d and e also uses | |
the same embeddings. | |
Embeddings are ignored when the relative window is out of limit for the first and the last | |
n items. | |
Args: | |
channels (int): input and inner layer channels. | |
out_channels (int): output channels. | |
num_heads (int): number of attention heads. | |
rel_attn_window_size (int, optional): relation attention window size. | |
If 4, for each time step next and previous 4 time steps are attended. | |
If default, relative encoding is disabled and it is a regular transformer. | |
Defaults to None. | |
heads_share (bool, optional): [description]. Defaults to True. | |
dropout_p (float, optional): dropout rate. Defaults to 0.. | |
input_length (int, optional): intput length for positional encoding. Defaults to None. | |
proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False. | |
proximal_init (bool, optional): enable/disable poximal init as in the paper. | |
Init key and query layer weights the same. Defaults to False. | |
""" | |
def __init__( | |
self, | |
channels, | |
out_channels, | |
num_heads, | |
rel_attn_window_size=None, | |
heads_share=True, | |
dropout_p=0.0, | |
input_length=None, | |
proximal_bias=False, | |
proximal_init=False, | |
): | |
super().__init__() | |
assert channels % num_heads == 0, " [!] channels should be divisible by num_heads." | |
# class attributes | |
self.channels = channels | |
self.out_channels = out_channels | |
self.num_heads = num_heads | |
self.rel_attn_window_size = rel_attn_window_size | |
self.heads_share = heads_share | |
self.input_length = input_length | |
self.proximal_bias = proximal_bias | |
self.dropout_p = dropout_p | |
self.attn = None | |
# query, key, value layers | |
self.k_channels = channels // num_heads | |
self.conv_q = nn.Conv1d(channels, channels, 1) | |
self.conv_k = nn.Conv1d(channels, channels, 1) | |
self.conv_v = nn.Conv1d(channels, channels, 1) | |
# output layers | |
self.conv_o = nn.Conv1d(channels, out_channels, 1) | |
self.dropout = nn.Dropout(dropout_p) | |
# relative positional encoding layers | |
if rel_attn_window_size is not None: | |
n_heads_rel = 1 if heads_share else num_heads | |
rel_stddev = self.k_channels ** -0.5 | |
emb_rel_k = nn.Parameter( | |
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev | |
) | |
emb_rel_v = nn.Parameter( | |
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev | |
) | |
self.register_parameter("emb_rel_k", emb_rel_k) | |
self.register_parameter("emb_rel_v", emb_rel_v) | |
# init layers | |
nn.init.xavier_uniform_(self.conv_q.weight) | |
nn.init.xavier_uniform_(self.conv_k.weight) | |
# proximal bias | |
if proximal_init: | |
self.conv_k.weight.data.copy_(self.conv_q.weight.data) | |
self.conv_k.bias.data.copy_(self.conv_q.bias.data) | |
nn.init.xavier_uniform_(self.conv_v.weight) | |
def forward(self, x, c, attn_mask=None): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- c: :math:`[B, C, T]` | |
- attn_mask: :math:`[B, 1, T, T]` | |
""" | |
q = self.conv_q(x) | |
k = self.conv_k(c) | |
v = self.conv_v(c) | |
x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
x = self.conv_o(x) | |
return x | |
def attention(self, query, key, value, mask=None): | |
# reshape [b, d, t] -> [b, n_h, t, d_k] | |
b, d, t_s, t_t = (*key.size(), query.size(2)) | |
query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3) | |
key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3) | |
value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3) | |
# compute raw attention scores | |
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) | |
# relative positional encoding for scores | |
if self.rel_attn_window_size is not None: | |
assert t_s == t_t, "Relative attention is only available for self-attention." | |
# get relative key embeddings | |
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | |
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) | |
rel_logits = self._relative_position_to_absolute_position(rel_logits) | |
scores_local = rel_logits / math.sqrt(self.k_channels) | |
scores = scores + scores_local | |
# proximan bias | |
if self.proximal_bias: | |
assert t_s == t_t, "Proximal bias is only available for self-attention." | |
scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype) | |
# attention score masking | |
if mask is not None: | |
# add small value to prevent oor error. | |
scores = scores.masked_fill(mask == 0, -1e4) | |
if self.input_length is not None: | |
block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length) | |
scores = scores * block_mask + -1e4 * (1 - block_mask) | |
# attention score normalization | |
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] | |
# apply dropout to attention weights | |
p_attn = self.dropout(p_attn) | |
# compute output | |
output = torch.matmul(p_attn, value) | |
# relative positional encoding for values | |
if self.rel_attn_window_size is not None: | |
relative_weights = self._absolute_position_to_relative_position(p_attn) | |
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) | |
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) | |
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] | |
return output, p_attn | |
def _matmul_with_relative_values(p_attn, re): | |
""" | |
Args: | |
p_attn (Tensor): attention weights. | |
re (Tensor): relative value embedding vector. (a_(i,j)^V) | |
Shapes: | |
-p_attn: :math:`[B, H, T, V]` | |
-re: :math:`[H or 1, V, D]` | |
-logits: :math:`[B, H, T, D]` | |
""" | |
logits = torch.matmul(p_attn, re.unsqueeze(0)) | |
return logits | |
def _matmul_with_relative_keys(query, re): | |
""" | |
Args: | |
query (Tensor): batch of query vectors. (x*W^Q) | |
re (Tensor): relative key embedding vector. (a_(i,j)^K) | |
Shapes: | |
- query: :math:`[B, H, T, D]` | |
- re: :math:`[H or 1, V, D]` | |
- logits: :math:`[B, H, T, V]` | |
""" | |
# logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)]) | |
logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1)) | |
return logits | |
def _get_relative_embeddings(self, relative_embeddings, length): | |
"""Convert embedding vestors to a tensor of embeddings""" | |
# Pad first before slice to avoid using cond ops. | |
pad_length = max(length - (self.rel_attn_window_size + 1), 0) | |
slice_start_position = max((self.rel_attn_window_size + 1) - length, 0) | |
slice_end_position = slice_start_position + 2 * length - 1 | |
if pad_length > 0: | |
padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) | |
else: | |
padded_relative_embeddings = relative_embeddings | |
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] | |
return used_relative_embeddings | |
def _relative_position_to_absolute_position(x): | |
"""Converts tensor from relative to absolute indexing for local attention. | |
Shapes: | |
x: :math:`[B, C, T, 2 * T - 1]` | |
Returns: | |
A Tensor of shape :math:`[B, C, T, T]` | |
""" | |
batch, heads, length, _ = x.size() | |
# Pad to shift from relative to absolute indexing. | |
x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0]) | |
# Pad extra elements so to add up to shape (len+1, 2*len-1). | |
x_flat = x.view([batch, heads, length * 2 * length]) | |
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0]) | |
# Reshape and slice out the padded elements. | |
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :] | |
return x_final | |
def _absolute_position_to_relative_position(x): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T, T]` | |
- ret: :math:`[B, C, T, 2*T-1]` | |
""" | |
batch, heads, length, _ = x.size() | |
# padd along column | |
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0]) | |
x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)]) | |
# add 0's in the beginning that will skew the elements after reshape | |
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0]) | |
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] | |
return x_final | |
def _attn_proximity_bias(length): | |
"""Produce an attention mask that discourages distant | |
attention values. | |
Args: | |
length (int): an integer scalar. | |
Returns: | |
a Tensor with shape :math:`[1, 1, T, T]` | |
""" | |
# L | |
r = torch.arange(length, dtype=torch.float32) | |
# L x L | |
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | |
# scale mask values | |
diff = -torch.log1p(torch.abs(diff)) | |
# 1 x 1 x L x L | |
return diff.unsqueeze(0).unsqueeze(0) | |
class FeedForwardNetwork(nn.Module): | |
"""Feed Forward Inner layers for Transformer. | |
Args: | |
in_channels (int): input tensor channels. | |
out_channels (int): output tensor channels. | |
hidden_channels (int): inner layers hidden channels. | |
kernel_size (int): conv1d filter kernel size. | |
dropout_p (float, optional): dropout rate. Defaults to 0. | |
""" | |
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dropout_p = dropout_p | |
if causal: | |
self.padding = self._causal_padding | |
else: | |
self.padding = self._same_padding | |
self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size) | |
self.conv_2 = nn.Conv1d(hidden_channels, out_channels, kernel_size) | |
self.dropout = nn.Dropout(dropout_p) | |
def forward(self, x, x_mask): | |
x = self.conv_1(self.padding(x * x_mask)) | |
x = torch.relu(x) | |
x = self.dropout(x) | |
x = self.conv_2(self.padding(x * x_mask)) | |
return x * x_mask | |
def _causal_padding(self, x): | |
if self.kernel_size == 1: | |
return x | |
pad_l = self.kernel_size - 1 | |
pad_r = 0 | |
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
x = F.pad(x, self._pad_shape(padding)) | |
return x | |
def _same_padding(self, x): | |
if self.kernel_size == 1: | |
return x | |
pad_l = (self.kernel_size - 1) // 2 | |
pad_r = self.kernel_size // 2 | |
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
x = F.pad(x, self._pad_shape(padding)) | |
return x | |
def _pad_shape(padding): | |
l = padding[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
class RelativePositionTransformer(nn.Module): | |
"""Transformer with Relative Potional Encoding. | |
https://arxiv.org/abs/1803.02155 | |
Args: | |
in_channels (int): number of channels of the input tensor. | |
out_chanels (int): number of channels of the output tensor. | |
hidden_channels (int): model hidden channels. | |
hidden_channels_ffn (int): hidden channels of FeedForwardNetwork. | |
num_heads (int): number of attention heads. | |
num_layers (int): number of transformer layers. | |
kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1. | |
dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0. | |
rel_attn_window_size (int, optional): relation attention window size. | |
If 4, for each time step next and previous 4 time steps are attended. | |
If default, relative encoding is disabled and it is a regular transformer. | |
Defaults to None. | |
input_length (int, optional): input lenght to limit position encoding. Defaults to None. | |
layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm | |
primitive. Use type "2", type "1: is for backward compat. Defaults to "1". | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
hidden_channels: int, | |
hidden_channels_ffn: int, | |
num_heads: int, | |
num_layers: int, | |
kernel_size=1, | |
dropout_p=0.0, | |
rel_attn_window_size: int = None, | |
input_length: int = None, | |
layer_norm_type: str = "1", | |
): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.hidden_channels_ffn = hidden_channels_ffn | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.kernel_size = kernel_size | |
self.dropout_p = dropout_p | |
self.rel_attn_window_size = rel_attn_window_size | |
self.out_channels = out_channels | |
self.dropout = nn.Dropout(dropout_p) | |
self.attn_layers = nn.ModuleList() | |
self.norm_layers_1 = nn.ModuleList() | |
self.ffn_layers = nn.ModuleList() | |
self.norm_layers_2 = nn.ModuleList() | |
for idx in range(self.num_layers): | |
self.attn_layers.append( | |
RelativePositionMultiHeadAttention( | |
hidden_channels if idx != 0 else in_channels, | |
hidden_channels, | |
num_heads, | |
rel_attn_window_size=rel_attn_window_size, | |
dropout_p=dropout_p, | |
input_length=input_length, | |
) | |
) | |
if layer_norm_type == "1": | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
elif layer_norm_type == "2": | |
self.norm_layers_1.append(LayerNorm2(hidden_channels)) | |
else: | |
raise ValueError(" [!] Unknown layer norm type") | |
if hidden_channels != out_channels and (idx + 1) == self.num_layers: | |
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
self.ffn_layers.append( | |
FeedForwardNetwork( | |
hidden_channels, | |
hidden_channels if (idx + 1) != self.num_layers else out_channels, | |
hidden_channels_ffn, | |
kernel_size, | |
dropout_p=dropout_p, | |
) | |
) | |
if layer_norm_type == "1": | |
self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels)) | |
elif layer_norm_type == "2": | |
self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels)) | |
else: | |
raise ValueError(" [!] Unknown layer norm type") | |
def forward(self, x, x_mask): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
""" | |
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
for i in range(self.num_layers): | |
x = x * x_mask | |
y = self.attn_layers[i](x, x, attn_mask) | |
y = self.dropout(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.dropout(y) | |
if (i + 1) == self.num_layers and hasattr(self, "proj"): | |
x = self.proj(x) | |
if self.out_channels!=1 or i!=(self.num_layers-1): | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |