Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
# from TTS.tts.layers.generic.normalization import LayerNorm2 | |
class LayerNorm2(nn.Module): | |
"""Layer norm for the 2nd dimension of the input using torch primitive. | |
Args: | |
channels (int): number of channels (2nd dimension) of the input. | |
eps (float): to prevent 0 division | |
Shapes: | |
- input: (B, C, T) | |
- output: (B, C, T) | |
""" | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = torch.nn.functional.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
# from TTS.tts.layers.vits.transforms import piecewise_rational_quadratic_transform | |
from python.xvapitch.util import piecewise_rational_quadratic_transform | |
class DilatedDepthSeparableConv(nn.Module): | |
def __init__(self, channels, kernel_size, num_layers, dropout_p=0.0) -> torch.tensor: | |
"""Dilated Depth-wise Separable Convolution module. | |
:: | |
x |-> DDSConv(x) -> LayerNorm(x) -> GeLU(x) -> Conv1x1(x) -> LayerNorm(x) -> GeLU(x) -> + -> o | |
|-------------------------------------------------------------------------------------^ | |
Args: | |
channels ([type]): [description] | |
kernel_size ([type]): [description] | |
num_layers ([type]): [description] | |
dropout_p (float, optional): [description]. Defaults to 0.0. | |
Returns: | |
torch.tensor: Network output masked by the input sequence mask. | |
""" | |
super().__init__() | |
self.num_layers = num_layers | |
self.convs_sep = nn.ModuleList() | |
self.convs_1x1 = nn.ModuleList() | |
self.norms_1 = nn.ModuleList() | |
self.norms_2 = nn.ModuleList() | |
for i in range(num_layers): | |
dilation = kernel_size ** i | |
padding = (kernel_size * dilation - dilation) // 2 | |
self.convs_sep.append( | |
nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding) | |
) | |
self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) | |
self.norms_1.append(LayerNorm2(channels)) | |
self.norms_2.append(LayerNorm2(channels)) | |
self.dropout = nn.Dropout(dropout_p) | |
def forward(self, x, x_mask, g=None): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
""" | |
if g is not None: | |
x = x + g | |
for i in range(self.num_layers): | |
y = self.convs_sep[i](x * x_mask) | |
y = self.norms_1[i](y) | |
y = F.gelu(y) | |
y = self.convs_1x1[i](y) | |
y = self.norms_2[i](y) | |
y = F.gelu(y) | |
y = self.dropout(y) | |
x = x + y | |
return x * x_mask | |
class ElementwiseAffine(nn.Module): | |
"""Element-wise affine transform like no-population stats BatchNorm alternative. | |
Args: | |
channels (int): Number of input tensor channels. | |
""" | |
def __init__(self, channels): | |
super().__init__() | |
self.translation = nn.Parameter(torch.zeros(channels, 1)) | |
self.log_scale = nn.Parameter(torch.zeros(channels, 1)) | |
def forward(self, x, x_mask, reverse=False, **kwargs): # pylint: disable=unused-argument | |
if not reverse: | |
y = (x * torch.exp(self.log_scale) + self.translation) * x_mask | |
logdet = torch.sum(self.log_scale * x_mask, [1, 2]) | |
return y, logdet | |
x = (x - self.translation) * torch.exp(-self.log_scale) * x_mask | |
return x | |
class ConvFlow(nn.Module): | |
"""Dilated depth separable convolutional based spline flow. | |
Args: | |
in_channels (int): Number of input tensor channels. | |
hidden_channels (int): Number of in network channels. | |
kernel_size (int): Convolutional kernel size. | |
num_layers (int): Number of convolutional layers. | |
num_bins (int, optional): Number of spline bins. Defaults to 10. | |
tail_bound (float, optional): Tail bound for PRQT. Defaults to 5.0. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
num_layers: int, | |
num_bins=10, | |
tail_bound=5.0, | |
): | |
super().__init__() | |
self.num_bins = num_bins | |
self.tail_bound = tail_bound | |
self.hidden_channels = hidden_channels | |
self.half_channels = in_channels // 2 | |
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers, dropout_p=0.0) | |
self.proj = nn.Conv1d(hidden_channels, self.half_channels * (num_bins * 3 - 1), 1) | |
self.proj.weight.data.zero_() | |
self.proj.bias.data.zero_() | |
def forward(self, x, x_mask, g=None, reverse=False): | |
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
h = self.pre(x0) | |
h = self.convs(h, x_mask, g=g) | |
h = self.proj(h) * x_mask | |
b, c, t = x0.shape | |
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] | |
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.hidden_channels) | |
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.hidden_channels) | |
unnormalized_derivatives = h[..., 2 * self.num_bins :] | |
x1, logabsdet = piecewise_rational_quadratic_transform( | |
x1, | |
unnormalized_widths, | |
unnormalized_heights, | |
unnormalized_derivatives, | |
inverse=reverse, | |
tails="linear", | |
tail_bound=self.tail_bound, | |
) | |
x = torch.cat([x0, x1], 1) * x_mask | |
logdet = torch.sum(logabsdet * x_mask, [1, 2]) | |
if not reverse: | |
return x, logdet | |
return x | |
class StochasticDurationPredictor(nn.Module): | |
"""Stochastic duration predictor with Spline Flows. | |
It applies Variational Dequantization and Variationsl Data Augmentation. | |
Paper: | |
SDP: https://arxiv.org/pdf/2106.06103.pdf | |
Spline Flow: https://arxiv.org/abs/1906.04032 | |
:: | |
## Inference | |
x -> TextCondEncoder() -> Flow() -> dr_hat | |
noise ----------------------^ | |
## Training | |
|---------------------| | |
x -> TextCondEncoder() -> + -> PosteriorEncoder() -> split() -> z_u, z_v -> (d - z_u) -> concat() -> Flow() -> noise | |
d -> DurCondEncoder() -> ^ | | |
|------------------------------------------------------------------------------| | |
Args: | |
in_channels (int): Number of input tensor channels. | |
hidden_channels (int): Number of hidden channels. | |
kernel_size (int): Kernel size of convolutional layers. | |
dropout_p (float): Dropout rate. | |
num_flows (int, optional): Number of flow blocks. Defaults to 4. | |
cond_channels (int, optional): Number of channels of conditioning tensor. Defaults to 0. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
dropout_p: float, | |
num_flows=4, | |
cond_channels=0, | |
language_emb_dim=0, | |
): | |
super().__init__() | |
# add language embedding dim in the input | |
if language_emb_dim: | |
in_channels += language_emb_dim | |
# condition encoder text | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) | |
self.proj = nn.Conv1d(hidden_channels, hidden_channels, 1) | |
# posterior encoder | |
self.flows = nn.ModuleList() | |
self.flows.append(ElementwiseAffine(2)) | |
self.flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] | |
# condition encoder duration | |
self.post_pre = nn.Conv1d(1, hidden_channels, 1) | |
self.post_convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) | |
self.post_proj = nn.Conv1d(hidden_channels, hidden_channels, 1) | |
# flow layers | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(ElementwiseAffine(2)) | |
self.post_flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] | |
if cond_channels != 0 and cond_channels is not None: | |
self.cond = nn.Conv1d(cond_channels, hidden_channels, 1) | |
if language_emb_dim != 0 and language_emb_dim is not None: | |
self.cond_lang = nn.Conv1d(language_emb_dim, hidden_channels, 1) | |
def forward(self, x, x_mask, dr=None, g=None, lang_emb=None, reverse=False, noise_scale=1.0): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
- dr: :math:`[B, 1, T]` | |
- g: :math:`[B, C]` | |
""" | |
# condition encoder text | |
x = self.pre(x) | |
if g is not None: | |
cond = self.cond(g) | |
x = x + cond | |
if lang_emb is not None: | |
lang_cond = self.cond_lang(lang_emb) | |
x = x + lang_cond | |
x = self.convs(x, x_mask) | |
x = self.proj(x) * x_mask | |
if not reverse: | |
flows = self.flows | |
assert dr is not None | |
# condition encoder duration | |
h = self.post_pre(dr) | |
h = self.post_convs(h, x_mask) | |
h = self.post_proj(h) * x_mask | |
noise = torch.randn(dr.size(0), 2, dr.size(2)).to(device=x.device, dtype=x.dtype) * x_mask | |
z_q = noise | |
# posterior encoder | |
logdet_tot_q = 0.0 | |
for idx, flow in enumerate(self.post_flows): | |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h)) | |
logdet_tot_q = logdet_tot_q + logdet_q | |
if idx > 0: | |
z_q = torch.flip(z_q, [1]) | |
z_u, z_v = torch.split(z_q, [1, 1], 1) | |
u = torch.sigmoid(z_u) * x_mask | |
z0 = (dr - u) * x_mask | |
# posterior encoder - neg log likelihood | |
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) | |
nll_posterior_encoder = ( | |
torch.sum(-0.5 * (math.log(2 * math.pi) + (noise ** 2)) * x_mask, [1, 2]) - logdet_tot_q | |
) | |
z0 = torch.log(torch.clamp_min(z0, 1e-5)) * x_mask | |
logdet_tot = torch.sum(-z0, [1, 2]) | |
z = torch.cat([z0, z_v], 1) | |
# flow layers | |
for idx, flow in enumerate(flows): | |
z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
logdet_tot = logdet_tot + logdet | |
if idx > 0: | |
z = torch.flip(z, [1]) | |
# flow layers - neg log likelihood | |
nll_flow_layers = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot | |
return nll_flow_layers + nll_posterior_encoder | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale | |
for flow in flows: | |
z = torch.flip(z, [1]) | |
z = flow(z, x_mask, g=x, reverse=reverse) | |
z0, _ = torch.split(z, [1, 1], 1) | |
logw = z0 | |
return logw | |
class StochasticPredictor(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
hidden_channels: int, | |
kernel_size: int, | |
dropout_p: float, | |
num_flows=4, | |
cond_channels=0, | |
# language_emb_dim=0, | |
): | |
super().__init__() | |
# add language embedding dim in the input | |
# if language_emb_dim: | |
# in_channels += language_emb_dim | |
# condition encoder text | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) | |
self.proj = nn.Conv1d(hidden_channels, hidden_channels, 1) | |
# posterior encoder | |
self.flows = nn.ModuleList() | |
self.flows.append(ElementwiseAffine(2)) | |
self.flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] | |
# condition encoder duration | |
self.post_pre = nn.Conv1d(1, hidden_channels, 1) | |
self.post_convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) | |
self.post_proj = nn.Conv1d(hidden_channels, hidden_channels, 1) | |
# flow layers | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(ElementwiseAffine(2)) | |
self.post_flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] | |
if cond_channels != 0 and cond_channels is not None: | |
self.cond = nn.Conv1d(cond_channels, hidden_channels, 1) | |
# if language_emb_dim != 0 and language_emb_dim is not None: | |
# self.cond_lang = nn.Conv1d(language_emb_dim, hidden_channels, 1) | |
# def forward(self, x, x_mask, dr=None, g=None, lang_emb=None, reverse=False, noise_scale=1.0): | |
def forward(self, x, x_mask, dr=None, g=None, reverse=False, noise_scale=1.0): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
- dr: :math:`[B, 1, T]` | |
- g: :math:`[B, C]` | |
""" | |
# condition encoder text | |
x = self.pre(x) | |
if g is not None: | |
x = x + self.cond(g) | |
# if lang_emb is not None: | |
# x = x + self.cond_lang(lang_emb) | |
x = self.convs(x, x_mask) | |
x = self.proj(x) * x_mask | |
if not reverse: | |
flows = self.flows | |
assert dr is not None | |
# condition encoder duration | |
h = self.post_pre(dr) | |
h = self.post_convs(h, x_mask) | |
h = self.post_proj(h) * x_mask | |
noise = torch.randn(dr.size(0), 2, dr.size(2)).to(device=x.device, dtype=x.dtype) * x_mask | |
z_q = noise | |
# posterior encoder | |
logdet_tot_q = 0.0 | |
for idx, flow in enumerate(self.post_flows): | |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h)) | |
logdet_tot_q = logdet_tot_q + logdet_q | |
if idx > 0: | |
z_q = torch.flip(z_q, [1]) | |
z_u, z_v = torch.split(z_q, [1, 1], 1) | |
u = torch.sigmoid(z_u) * x_mask | |
z0 = (dr - u) * x_mask | |
# posterior encoder - neg log likelihood | |
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) | |
nll_posterior_encoder = ( | |
torch.sum(-0.5 * (math.log(2 * math.pi) + (noise ** 2)) * x_mask, [1, 2]) - logdet_tot_q | |
) | |
z0 = torch.log(torch.clamp_min(z0, 1e-5)) * x_mask | |
logdet_tot = torch.sum(-z0, [1, 2]) | |
z = torch.cat([z0, z_v], 1) | |
# flow layers | |
for idx, flow in enumerate(flows): | |
z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
logdet_tot = logdet_tot + logdet | |
if idx > 0: | |
z = torch.flip(z, [1]) | |
# flow layers - neg log likelihood | |
nll_flow_layers = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot | |
return nll_flow_layers + nll_posterior_encoder | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale | |
for flow in flows: | |
z = torch.flip(z, [1]) | |
z = flow(z, x_mask, g=x, reverse=reverse) | |
z0, _ = torch.split(z, [1, 1], 1) | |
logw = z0 | |
return logw | |