Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# ***************************************************************************** | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the NVIDIA CORPORATION nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# ***************************************************************************** | |
import torch | |
import torch.nn.functional as F | |
from librosa.filters import mel as librosa_mel_fn | |
from python.common.audio_processing import dynamic_range_compression, dynamic_range_decompression | |
from python.stft import STFT | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super(LinearNorm, self).__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.linear_layer.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class ConvNorm(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, | |
padding=None, dilation=1, bias=True, w_init_gain='linear', batch_norm=False): | |
super(ConvNorm, self).__init__() | |
if padding is None: | |
assert(kernel_size % 2 == 1) | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d(in_channels, out_channels, | |
kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, | |
bias=bias) | |
self.norm = torch.nn.BatchNorm1D(out_channels) if batch_norm else None | |
torch.nn.init.xavier_uniform_( | |
self.conv.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, signal): | |
if self.norm is None: | |
return self.conv(signal) | |
else: | |
return self.norm(self.conv(signal)) | |
class ConvReLUNorm(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): | |
super(ConvReLUNorm, self).__init__() | |
self.conv = torch.nn.Conv1d(in_channels, out_channels, | |
kernel_size=kernel_size, | |
padding=(kernel_size // 2)) | |
self.norm = torch.nn.LayerNorm(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
def forward(self, signal): | |
out = F.relu(self.conv(signal)) | |
out = self.norm(out.transpose(1, 2)).transpose(1, 2) | |
return self.dropout(out) | |
class TacotronSTFT(torch.nn.Module): | |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, | |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, | |
mel_fmax=8000.0): | |
super(TacotronSTFT, self).__init__() | |
self.n_mel_channels = n_mel_channels | |
self.sampling_rate = sampling_rate | |
self.stft_fn = STFT(filter_length, hop_length, win_length) | |
mel_basis = librosa_mel_fn( | |
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer('mel_basis', mel_basis) | |
def spectral_normalize(self, magnitudes): | |
output = dynamic_range_compression(magnitudes) | |
return output | |
def spectral_de_normalize(self, magnitudes): | |
output = dynamic_range_decompression(magnitudes) | |
return output | |
def mel_spectrogram(self, y): | |
"""Computes mel-spectrograms from a batch of waves | |
PARAMS | |
------ | |
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
RETURNS | |
------- | |
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
""" | |
assert(torch.min(y.data) >= -1) | |
assert(torch.max(y.data) <= 1) | |
magnitudes, phases = self.stft_fn.transform(y) | |
magnitudes = magnitudes.data | |
mel_output = torch.matmul(self.mel_basis, magnitudes) | |
mel_output = self.spectral_normalize(mel_output) | |
return mel_output | |