Pendrokar's picture
xVASynth v3 code for English
19c8b95
raw
history blame
20.3 kB
import os
import re
import json
import codecs
import ffmpeg
import argparse
import torch
import torch.nn as nn
from python.fastpitch1_1 import models
from scipy.io.wavfile import write
from torch.nn.utils.rnn import pad_sequence
from python.common.text import text_to_sequence, sequence_to_text
ARPAbet_replacements_dict = {
"YO": "IY0 UW0",
"UH": "UH0",
"AR": "R",
"EY": "EY0",
"A": "AA0",
"AW": "AW0",
"X": "K S",
"CX": "K HH",
"AO": "AO0",
"PF": "P F",
"AY": "AY0",
"OE": "OW0 IY0",
"IY": "IY0",
"EH": "EH0",
"OY": "OY0",
"IH": "IH0",
"H": "HH"
}
class FastPitch1_1(object):
def __init__(self, logger, PROD, device, models_manager):
super(FastPitch1_1, self).__init__()
self.logger = logger
self.PROD = PROD
self.models_manager = models_manager
self.device = device
self.ckpt_path = None
self.arpabet_dict = {}
torch.backends.cudnn.benchmark = True
self.init_model("english_basic")
self.isReady = True
def init_model (self, symbols_alphabet):
parser = argparse.ArgumentParser(description='PyTorch FastPitch Inference', allow_abbrev=False)
self.symbols_alphabet = symbols_alphabet
model_parser = models.parse_model_args("FastPitch", symbols_alphabet, parser, add_help=False)
model_args, model_unk_args = model_parser.parse_known_args()
model_config = models.get_model_config("FastPitch", model_args)
self.model = models.get_model("FastPitch", model_config, self.device, self.logger, forward_is_infer=True, jitable=False)
self.model.eval()
self.model.device = self.device
def load_state_dict (self, ckpt_path, ckpt, n_speakers=1, base_lang=None):
self.ckpt_path = ckpt_path
with open(ckpt_path.replace(".pt", ".json"), "r") as f:
data = json.load(f)
if "symbols_alphabet" in data.keys() and data["symbols_alphabet"]!=self.symbols_alphabet:
self.logger.info(f'Changing symbols_alphabet from {self.symbols_alphabet} to {data["symbols_alphabet"]}')
self.init_model(data["symbols_alphabet"])
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
self.model.load_state_dict(ckpt, strict=False)
self.model = self.model.float()
self.model.eval()
def init_arpabet_dicts (self):
if len(list(self.arpabet_dict.keys()))==0:
self.refresh_arpabet_dicts()
def refresh_arpabet_dicts (self):
self.arpabet_dict = {}
json_files = sorted(os.listdir(f'{"./resources/app" if self.PROD else "."}/arpabet'))
json_files = [fname for fname in json_files if fname.endswith(".json")]
for fname in json_files:
with codecs.open(f'{"./resources/app" if self.PROD else "."}/arpabet/{fname}', encoding="utf-8") as f:
json_data = json.load(f)
for word in list(json_data["data"].keys()):
if json_data["data"][word]["enabled"]==True:
self.arpabet_dict[word] = json_data["data"][word]["arpabet"]
def infer_arpabet_dict (self, sentence, plugin_manager=None):
dict_words = list(self.arpabet_dict.keys())
data_context = {}
data_context["sentence"] = sentence
data_context["dict_words"] = dict_words
data_context["language"] = "en"
plugin_manager.run_plugins(plist=plugin_manager.plugins["arpabet-replace"]["pre"], event="pre arpabet-replace", data=data_context)
sentence = data_context["sentence"]
dict_words = data_context["dict_words"]
# Don't run the ARPAbet replacement for every single word, as it would be too slow. Instead, do it only for words that are actually present in the prompt
words_in_prompt = (sentence+" ").replace("}","").replace("{","").replace(",","").replace("?","").replace("!","").replace("...",".").replace(". "," ").lower().split(" ")
words_in_prompt = [word.strip() for word in words_in_prompt if len(word.strip()) and word in dict_words]
if len(words_in_prompt):
# Pad out punctuation, to make sure they don't get used in the word look-ups
sentence = " "+sentence.replace(",", " ,").replace(".", " .").replace("!", " !").replace("?", " ?")+" "
for dict_word in words_in_prompt:
arpabet_string = " "+self.arpabet_dict[dict_word]+" "
if "CX" in arpabet_string:
# German:
# hhhhh sound After "a", "o", "u" and "au"
# The usual K HH otherwise
# Need to account for multiple ch per word
pass
for key in ARPAbet_replacements_dict.keys():
arpabet_string = arpabet_string.replace(f' {key} ', f' {ARPAbet_replacements_dict[key]} ')
arpabet_string = arpabet_string.strip()
sentence = re.sub("(?<!\{)\s"+dict_word.strip().replace(".", "\.").replace("(", "\(").replace(")", "\)")+"\s(?![\w\s\(\)]*[\}])", " {"+arpabet_string+"} ", sentence, flags=re.IGNORECASE)
# Do it twice, because re will not re-use spaces, so if you have two neighbouring words to be replaced,
# and they share a space character, one of them won't get changed
sentence = re.sub("(?<!\{)\s"+dict_word.strip().replace(".", "\.").replace("(", "\(").replace(")", "\)")+"\s(?![\w\s\(\)]*[\}])", " {"+arpabet_string+"} ", sentence, flags=re.IGNORECASE)
# Undo the punctuation padding, to retain the original sentence structure
sentence = sentence.replace(" ,", ",").replace(" .", ".").replace(" !", "!").replace(" ?", "?")
sentence = re.sub("^\s+", " ", sentence) if sentence.startswith(" ") else re.sub("^\s*", "", sentence)
sentence = re.sub("\s+$", " ", sentence) if sentence.endswith(" ") else re.sub("\s*$", "", sentence)
data_context = {}
data_context["sentence"] = sentence
plugin_manager.run_plugins(plist=plugin_manager.plugins["arpabet-replace"]["post"], event="post arpabet-replace", data=data_context)
sentence = data_context["sentence"]
return sentence
def infer_batch(self, plugin_manager, linesBatch, outputJSON, vocoder, speaker_i, old_sequence=None, useSR=False, useCleanup=False):
print(f'Inferring batch of {len(linesBatch)} lines')
sigma_infer = 0.9
stft_hop_length = 256
sampling_rate = 22050
denoising_strength = 0.01
text_sequences = []
cleaned_text_sequences = []
for record in linesBatch:
text = record[0]
text = re.sub(r'[^a-zA-ZäöüÄÖÜß_\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', text)
text = self.infer_arpabet_dict(text, plugin_manager)
text = text.replace("(", "").replace(")", "")
text = re.sub(r'[^a-zA-ZäöüÄÖÜß\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', text)
sequence = text_to_sequence(text, "english_basic", ['english_cleaners'])
cleaned_text_sequences.append(sequence_to_text("english_basic", sequence))
text = torch.LongTensor(sequence)
text_sequences.append(text)
text_sequences = pad_sequence(text_sequences, batch_first=True).to(self.device)
with torch.no_grad():
pace = torch.tensor([record[3] for record in linesBatch]).unsqueeze(1).to(self.device)
pitch_amp = torch.tensor([record[7] for record in linesBatch]).unsqueeze(1).to(self.device)
pitch_data = None # Maybe in the future
mel, mel_lens, dur_pred, pitch_pred, energy_pred, start_index, end_index = self.model.infer_advanced(self.logger, plugin_manager, cleaned_text_sequences, text_sequences, speaker_i=speaker_i, pace=pace, pitch_data=pitch_data, old_sequence=None, pitch_amp=pitch_amp)
if "waveglow" in vocoder:
self.models_manager.init_model(vocoder)
audios = self.models_manager.models(vocoder).model.infer(mel, sigma=sigma_infer)
audios = self.models_manager.models(vocoder).denoiser(audios.float(), strength=denoising_strength).squeeze(1)
for i, audio in enumerate(audios):
audio = audio[:mel_lens[i].item() * stft_hop_length]
audio = audio/torch.max(torch.abs(audio))
output = linesBatch[i][4]
audio = audio.cpu().numpy()
if useCleanup:
ffmpeg_path = f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
write(output.replace(".wav", "_preSR.wav"), sampling_rate, audio)
else:
write(output.replace(".wav", "_preCleanupPreFFmpeg.wav"), sampling_rate, audio)
stream = ffmpeg.input(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = output.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
write(output.replace(".wav", "_preSR.wav") if useSR else output, sampling_rate, audio)
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(output.replace(".wav", "_preSR.wav"), output.replace(".wav", "_preCleanup.wav") if useCleanup else output)
os.remove(output.replace(".wav", "_preSR.wav"))
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(output.replace(".wav", "_preCleanup.wav"), output)
os.remove(output.replace(".wav", "_preCleanup.wav"))
del audios
else:
self.models_manager.load_model("hifigan", f'{"./resources/app" if self.PROD else "."}/python/hifigan/hifi.pt' if vocoder=="qnd" else self.ckpt_path.replace(".pt", ".hg.pt"))
y_g_hat = self.models_manager.models("hifigan").model(mel)
audios = y_g_hat.view((y_g_hat.shape[0], y_g_hat.shape[2]))
# audio = audio * 2.3026 # This brings it to the same volume, but makes it clip in places
for i, audio in enumerate(audios):
audio = audio[:mel_lens[i].item() * stft_hop_length]
audio = audio.cpu().numpy()
audio = audio * 32768.0
audio = audio.astype('int16')
output = linesBatch[i][4]
if useCleanup:
ffmpeg_path = f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
write(output.replace(".wav", "_preSR.wav"), sampling_rate, audio)
else:
write(output.replace(".wav", "_preCleanupPreFFmpeg.wav"), sampling_rate, audio)
stream = ffmpeg.input(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = output.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
write(output.replace(".wav", "_preSR.wav") if useSR else output, sampling_rate, audio)
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(output.replace(".wav", "_preSR.wav"), output.replace(".wav", "_preCleanup.wav") if useCleanup else output)
os.remove(output.replace(".wav", "_preSR.wav"))
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(output.replace(".wav", "_preCleanup.wav"), output)
os.remove(output.replace(".wav", "_preCleanup.wav"))
if outputJSON:
for ri, record in enumerate(linesBatch):
# linesBatch: sequence, pitch, duration, pace, tempFileLocation, outPath, outFolder
output_fname = linesBatch[ri][5].replace(".wav", ".json")
containing_folder = "/".join(output_fname.split("/")[:-1])
os.makedirs(containing_folder, exist_ok=True)
with open(output_fname, "w+") as f:
data = {}
data["inputSequence"] = str(linesBatch[ri][0])
data["pacing"] = float(linesBatch[ri][3])
data["letters"] = [char.replace("{", "").replace("}", "") for char in list(cleaned_text_sequences[ri].split("|"))]
data["currentVoice"] = self.ckpt_path.split("/")[-1].replace(".pt", "")
data["resetEnergy"] = [float(val) for val in list(energy_pred[ri].cpu().detach().numpy())]
data["resetPitch"] = [float(val) for val in list(pitch_pred[ri][0].cpu().detach().numpy())]
data["resetDurs"] = [float(val) for val in list(dur_pred[ri].cpu().detach().numpy())]
data["ampFlatCounter"] = 0
data["pitchNew"] = data["resetPitch"]
data["energyNew"] = data["resetEnergy"]
data["dursNew"] = data["resetDurs"]
f.write(json.dumps(data, indent=4))
del mel, mel_lens
return ""
def infer(self, plugin_manager, text, output, vocoder, speaker_i, pace=1.0, editor_data=None, old_sequence=None, globalAmplitudeModifier=None, base_lang=None, base_emb=None, useSR=False, useCleanup=False):
sigma_infer = 0.9
stft_hop_length = 256
sampling_rate = 22050
denoising_strength = 0.01
text = re.sub(r'[^a-zA-ZäöüÄÖÜß_\s\(\)\[\]0-9\?\.\,\!\'\{\}\-]+', '', text)
text = self.infer_arpabet_dict(text, plugin_manager)
text = text.replace("(", "").replace(")", "")
text = re.sub(r'[^a-zA-ZäöüÄÖÜß\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', text)
sequence = text_to_sequence(text, "english_basic", ['english_cleaners'])
cleaned_text = sequence_to_text("english_basic", sequence)
text = torch.LongTensor(sequence)
text = pad_sequence([text], batch_first=True).to(self.models_manager.device)
with torch.no_grad():
if old_sequence is not None:
old_sequence = re.sub(r'[^a-zA-Z\s\(\)\[\]0-9\?\.\,\!\'\{\}]+', '', old_sequence)
old_sequence = text_to_sequence(old_sequence, "english_basic", ['english_cleaners'])
old_sequence = torch.LongTensor(old_sequence)
old_sequence = pad_sequence([old_sequence], batch_first=True).to(self.models_manager.device)
mel, mel_lens, dur_pred, pitch_pred, energy_pred, start_index, end_index = self.model.infer_advanced(self.logger, plugin_manager, [cleaned_text], text, speaker_i=speaker_i, pace=pace, pitch_data=editor_data, old_sequence=old_sequence)
if "waveglow" in vocoder:
self.models_manager.init_model(vocoder)
audios = self.models_manager.models(vocoder).model.infer(mel, sigma=sigma_infer)
audios = self.models_manager.models(vocoder).denoiser(audios.float(), strength=denoising_strength).squeeze(1)
for i, audio in enumerate(audios):
audio = audio[:mel_lens[i].item() * stft_hop_length]
audio = audio/torch.max(torch.abs(audio))
write(output, sampling_rate, audio.cpu().numpy())
del audios
else:
self.models_manager.load_model("hifigan", f'{"./resources/app" if self.PROD else "."}/python/hifigan/hifi.pt' if vocoder=="qnd" else self.ckpt_path.replace(".pt", ".hg.pt"))
y_g_hat = self.models_manager.models("hifigan").model(mel)
audio = y_g_hat.squeeze()
audio = audio * 32768.0
# audio = audio * 2.3026 # This brings it to the same volume, but makes it clip in places
audio = audio.cpu().numpy().astype('int16')
if useCleanup:
ffmpeg_path = f'{"./resources/app" if self.PROD else "."}/python/ffmpeg.exe'
if useSR:
write(output.replace(".wav", "_preSR.wav"), sampling_rate, audio)
else:
write(output.replace(".wav", "_preCleanupPreFFmpeg.wav"), sampling_rate, audio)
stream = ffmpeg.input(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
ffmpeg_options = {"ar": 48000}
output_path = output.replace(".wav", "_preCleanup.wav")
stream = ffmpeg.output(stream, output_path, **ffmpeg_options)
out, err = (ffmpeg.run(stream, cmd=ffmpeg_path, capture_stdout=True, capture_stderr=True, overwrite_output=True))
os.remove(output.replace(".wav", "_preCleanupPreFFmpeg.wav"))
else:
write(output.replace(".wav", "_preSR.wav") if useSR else output, sampling_rate, audio)
if useSR:
self.models_manager.init_model("nuwave2")
self.models_manager.models("nuwave2").sr_audio(output.replace(".wav", "_preSR.wav"), output.replace(".wav", "_preCleanup.wav") if useCleanup else output)
if useCleanup:
self.models_manager.init_model("deepfilternet2")
self.models_manager.models("deepfilternet2").cleanup_audio(output.replace(".wav", "_preCleanup.wav"), output)
del audio
del mel, mel_lens
[pitch, durations, energy] = [pitch_pred.squeeze().cpu().detach().numpy(), dur_pred.cpu().detach().numpy()[0], energy_pred.cpu().detach().numpy()[0] if energy_pred is not None else []]
[em_angry, em_happy, em_sad, em_surprise] = [[],[],[],[]]
pitch_durations_energy_text = ",".join([str(v) for v in pitch]) + "\n" + \
",".join([str(v) for v in durations]) + "\n" + \
",".join([str(v) for v in energy]) + "\n" + \
",".join([str(v) for v in em_angry]) + "\n" + \
",".join([str(v) for v in em_happy]) + "\n" + \
",".join([str(v) for v in em_sad]) + "\n" + \
",".join([str(v) for v in em_surprise]) + "\n" + "{"+"}"
del pitch_pred, dur_pred, energy_pred, text, sequence
return pitch_durations_energy_text +"\n"+cleaned_text +"\n"+ f'{start_index}\n{end_index}'
def set_device (self, device):
self.device = device
self.model = self.model.to(device)
self.model.device = device
def run_speech_to_speech (self, audiopath, models_manager, plugin_manager, modelType, s2s_components, text):
return self.model.run_speech_to_speech(self.device, self.logger, models_manager, plugin_manager, modelType, s2s_components, audiopath, text, text_to_sequence, sequence_to_text, self)