Pendrokar commited on
Commit
e1c08c5
β€’
1 Parent(s): 5df5032

DeepMoji xVASynth Plugin

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. app.py +2 -1
  2. resources/app/plugins.txt +1 -0
  3. resources/app/plugins/deepmoji_plugin/DeepMoji/.gitignore +108 -0
  4. resources/app/plugins/deepmoji_plugin/DeepMoji/.travis.yml +27 -0
  5. resources/app/plugins/deepmoji_plugin/DeepMoji/LICENSE +21 -0
  6. resources/app/plugins/deepmoji_plugin/DeepMoji/README.md +90 -0
  7. resources/app/plugins/deepmoji_plugin/DeepMoji/data/.gitkeep +1 -0
  8. resources/app/plugins/deepmoji_plugin/DeepMoji/data/emoji_codes.json +67 -0
  9. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/INSTALLER +1 -0
  10. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/LICENSE.txt +28 -0
  11. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/METADATA +182 -0
  12. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/RECORD +25 -0
  13. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/REQUESTED +0 -0
  14. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/WHEEL +6 -0
  15. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/top_level.txt +1 -0
  16. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/zip-safe +1 -0
  17. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/__init__.py +62 -0
  18. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/__init__.pyi +37 -0
  19. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/core.py +372 -0
  20. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/core.pyi +47 -0
  21. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/py.typed +0 -0
  22. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/tokenizer.py +361 -0
  23. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/tokenizer.pyi +47 -0
  24. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/__init__.py +36 -0
  25. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/__init__.pyi +6 -0
  26. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/data_dict.py +0 -0
  27. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/data_dict.pyi +7 -0
  28. resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/py.typed +0 -0
  29. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/.gitkeep +1 -0
  30. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/README.md +39 -0
  31. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/__init__.py +0 -0
  32. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/create_twitter_vocab.py +13 -0
  33. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/dataset_split.py +59 -0
  34. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/encode_texts.py +41 -0
  35. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/example_helper.py +6 -0
  36. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/finetune_insults_chain-thaw.py +44 -0
  37. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/finetune_semeval_class-avg_f1.py +50 -0
  38. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/finetune_youtube_last.py +35 -0
  39. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/score_texts_emojis.py +85 -0
  40. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/text_emojize.py +63 -0
  41. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/tokenize_dataset.py +26 -0
  42. resources/app/plugins/deepmoji_plugin/DeepMoji/examples/vocab_extension.py +30 -0
  43. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/analyze_all_results.py +40 -0
  44. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/analyze_results.py +39 -0
  45. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/calculate_coverages.py +90 -0
  46. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/convert_all_datasets.py +110 -0
  47. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/download_weights.py +65 -0
  48. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/finetune_dataset.py +109 -0
  49. resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/results/.gitkeep +1 -0
  50. resources/app/plugins/deepmoji_plugin/DeepMoji/setup.py +16 -0
app.py CHANGED
@@ -115,7 +115,6 @@ def run_xvaserver():
115
 
116
  # load default model
117
  load_model(voice_models[0])
118
- current_voice_model = voice_models[0]
119
 
120
  # Wait for the process to exit
121
  xvaserver.wait()
@@ -145,6 +144,8 @@ def load_model(voice_model_name):
145
  return
146
 
147
  def predict(input_text, pacing, voice, lang):
 
 
148
 
149
  # load voice model if not the current model
150
  if (current_voice_model != voice):
 
115
 
116
  # load default model
117
  load_model(voice_models[0])
 
118
 
119
  # Wait for the process to exit
120
  xvaserver.wait()
 
144
  return
145
 
146
  def predict(input_text, pacing, voice, lang):
147
+ # grab only the first 1000 characters
148
+ input_text = input_text[:1000]
149
 
150
  # load voice model if not the current model
151
  if (current_voice_model != voice):
resources/app/plugins.txt CHANGED
@@ -0,0 +1 @@
 
 
1
+ *deepmoji_plugin
resources/app/plugins/deepmoji_plugin/DeepMoji/.gitignore ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ env/
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+
27
+ # PyInstaller
28
+ # Usually these files are written by a python script from a template
29
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
30
+ *.manifest
31
+ *.spec
32
+
33
+ # Installer logs
34
+ pip-log.txt
35
+ pip-delete-this-directory.txt
36
+
37
+ # Unit test / coverage reports
38
+ htmlcov/
39
+ .tox/
40
+ .coverage
41
+ .coverage.*
42
+ .cache
43
+ nosetests.xml
44
+ coverage.xml
45
+ *,cover
46
+ .hypothesis/
47
+
48
+ # Translations
49
+ *.mo
50
+ *.pot
51
+
52
+ # Django stuff:
53
+ *.log
54
+ local_settings.py
55
+
56
+ # Flask stuff:
57
+ instance/
58
+ .webassets-cache
59
+
60
+ # Scrapy stuff:
61
+ .scrapy
62
+
63
+ # Sphinx documentation
64
+ docs/_build/
65
+
66
+ # PyBuilder
67
+ target/
68
+
69
+ # IPython Notebook
70
+ .ipynb_checkpoints
71
+
72
+ # pyenv
73
+ .python-version
74
+
75
+ # celery beat schedule file
76
+ celerybeat-schedule
77
+
78
+ # dotenv
79
+ .env
80
+
81
+ # virtualenv
82
+ venv/
83
+ ENV/
84
+
85
+ # Spyder project settings
86
+ .spyderproject
87
+
88
+ # Rope project settings
89
+ .ropeproject
90
+
91
+ # Local data
92
+ /data/local
93
+
94
+ # Vim swapfiles
95
+ *.swp
96
+ *.swo
97
+
98
+ # nosetests
99
+ .noseids
100
+
101
+ # pyTorch model
102
+ pytorch_model.bin
103
+
104
+ # VSCODE
105
+ .vscode/*
106
+
107
+ # data
108
+ *.csv
resources/app/plugins/deepmoji_plugin/DeepMoji/.travis.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: travis_latest
2
+ language: python
3
+ cache: pip
4
+ python:
5
+ - 2.7
6
+ - 3.6
7
+ #- nightly
8
+ #- pypy
9
+ #- pypy3
10
+ matrix:
11
+ allow_failures:
12
+ - python: nightly
13
+ - python: pypy
14
+ - python: pypy3
15
+ install:
16
+ #- pip install -r requirements.txt
17
+ - pip install flake8 # pytest # add another testing frameworks later
18
+ before_script:
19
+ # stop the build if there are Python syntax errors or undefined names
20
+ - flake8 . --count --select=E901,E999,F821,F822,F823 --show-source --statistics
21
+ # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
22
+ - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
23
+ script:
24
+ - true # pytest --capture=sys # add other tests here
25
+ notifications:
26
+ on_success: change
27
+ on_failure: change # `always` will be the setting once code changes slow down
resources/app/plugins/deepmoji_plugin/DeepMoji/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2017 Bjarke Felbo, Han Thi Nguyen, Thomas Wolf
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
resources/app/plugins/deepmoji_plugin/DeepMoji/README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### ------ Update September 2018 ------
2
+ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such that we can make improvements and design better models in the future.
3
+
4
+ You can help us achieve this by answering this [4-question Google Form](https://docs.google.com/forms/d/e/1FAIpQLSe1h4NSQD30YM8dsbJQEnki-02_9KVQD34qgP9to0bwAHBvBA/viewform "DeepMoji Google Form"). Thanks for your support!
5
+
6
+ # πŸ˜‡ TorchMoji
7
+
8
+ > **Read our blog post about the implementation process [here](https://medium.com/huggingface/understanding-emotions-from-keras-to-pytorch-3ccb61d5a983).**
9
+
10
+ TorchMoji is a [pyTorch](http://pytorch.org/) implementation of the [DeepMoji](https://github.com/bfelbo/DeepMoji) model developped by Bjarke Felbo, Alan Mislove, Anders SΓΈgaard, Iyad Rahwan and Sune Lehmann.
11
+
12
+ This model trained on 1.2 billion tweets with emojis to understand how language is used to express emotions. Through transfer learning the model can obtain state-of-the-art performance on many emotion-related text modeling tasks.
13
+
14
+ Try the online demo of DeepMoji [http://deepmoji.mit.edu](http://deepmoji.mit.edu/)! See the [paper](https://arxiv.org/abs/1708.00524), [blog post](https://medium.com/@bjarkefelbo/what-can-we-learn-from-emojis-6beb165a5ea0) or [FAQ](https://www.media.mit.edu/projects/deepmoji/overview/) for more details.
15
+
16
+ ## Overview
17
+ * [torchmoji/](torchmoji) contains all the underlying code needed to convert a dataset to the vocabulary and use the model.
18
+ * [examples/](examples) contains short code snippets showing how to convert a dataset to the vocabulary, load up the model and run it on that dataset.
19
+ * [scripts/](scripts) contains code for processing and analysing datasets to reproduce results in the paper.
20
+ * [model/](model) contains the pretrained model and vocabulary.
21
+ * [data/](data) contains raw and processed datasets that we include in this repository for testing.
22
+ * [tests/](tests) contains unit tests for the codebase.
23
+
24
+ To start out with, have a look inside the [examples/](examples) directory. See [score_texts_emojis.py](examples/score_texts_emojis.py) for how to use DeepMoji to extract emoji predictions, [encode_texts.py](examples/encode_texts.py) for how to convert text into 2304-dimensional emotional feature vectors or [finetune_youtube_last.py](examples/finetune_youtube_last.py) for how to use the model for transfer learning on a new dataset.
25
+
26
+ Please consider citing the [paper](https://arxiv.org/abs/1708.00524) of DeepMoji if you use the model or code (see below for citation).
27
+
28
+ ## Installation
29
+
30
+ Assuming you have [Conda](https://conda.io) installed, run:
31
+
32
+ ```bash
33
+ conda create -n torchMoji -f environment.yml
34
+ conda activate torchMoji
35
+ pip install -e .
36
+ ```
37
+
38
+ This will install the following dependencies:
39
+
40
+ * [PyTorch](https://pytorch.org)
41
+ * [scikit-learn](https://github.com/scikit-learn/scikit-learn)
42
+ * [text-unidecode](https://github.com/kmike/text-unidecode)
43
+ * [emoji](https://github.com/carpedm20/emoji)
44
+
45
+ If you do not want to use Conda, please install `torch==1.3.1` from PIP and then run `pip install -e .` from the root directory (don't forget to set up a virtual environment).
46
+
47
+ At the present stage the model can't make efficient use of CUDA. See details in the [Hugging Face blog post](https://medium.com/huggingface/understanding-emotions-from-keras-to-pytorch-3ccb61d5a983).
48
+
49
+ Then, run the download script to downloads the pretrained torchMoji weights (~85MB) from [here](https://www.dropbox.com/s/q8lax9ary32c7t9/pytorch_model.bin?dl=0) and put them in the model/ directory:
50
+
51
+ ```bash
52
+ python scripts/download_weights.py
53
+ ```
54
+
55
+ ## Testing
56
+ To run the tests, install [nose](http://nose.readthedocs.io/en/latest/). After installing, navigate to the [tests/](tests) directory and run:
57
+
58
+ ```bash
59
+ cd tests
60
+ nosetests -v
61
+ ```
62
+
63
+ By default, this will also run finetuning tests. These tests train the model for one epoch and then check the resulting accuracy, which may take several minutes to finish. If you'd prefer to exclude those, run the following instead:
64
+
65
+ ```bash
66
+ cd tests
67
+ nosetests -v -a '!slow'
68
+ ```
69
+
70
+ ## Disclaimer
71
+ This code has been tested to work with Python 2.7 and 3.5 on Ubuntu 16.04 and macOS Sierra machines. It has not been optimized for efficiency, but should be fast enough for most purposes. We do not give any guarantees that there are no bugs - use the code on your own responsibility!
72
+
73
+ ## Contributions
74
+ We welcome pull requests if you feel like something could be improved. You can also greatly help us by telling us how you felt when writing your most recent tweets. Just click [here](http://deepmoji.mit.edu/contribute/) to contribute.
75
+
76
+ ## License
77
+ This code and the pretrained model is licensed under the MIT license.
78
+
79
+ ## Benchmark datasets
80
+ The benchmark datasets are uploaded to this repository for convenience purposes only. They were not released by us and we do not claim any rights on them. Use the datasets at your responsibility and make sure you fulfill the licenses that they were released with. If you use any of the benchmark datasets please consider citing the original authors.
81
+
82
+ ## Citation
83
+ ```
84
+ @inproceedings{felbo2017,
85
+ title={Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm},
86
+ author={Felbo, Bjarke and Mislove, Alan and S{\o}gaard, Anders and Rahwan, Iyad and Lehmann, Sune},
87
+ booktitle={Conference on Empirical Methods in Natural Language Processing (EMNLP)},
88
+ year={2017}
89
+ }
90
+ ```
resources/app/plugins/deepmoji_plugin/DeepMoji/data/.gitkeep ADDED
@@ -0,0 +1 @@
 
 
1
+
resources/app/plugins/deepmoji_plugin/DeepMoji/data/emoji_codes.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "0": ":joy:",
3
+ "1": ":unamused:",
4
+ "2": ":weary:",
5
+ "3": ":sob:",
6
+ "4": ":heart_eyes:",
7
+ "5": ":pensive:",
8
+ "6": ":ok_hand:",
9
+ "7": ":blush:",
10
+ "8": ":heart:",
11
+ "9": ":smirk:",
12
+ "10":":grin:",
13
+ "11":":notes:",
14
+ "12":":flushed:",
15
+ "13":":100:",
16
+ "14":":sleeping:",
17
+ "15":":relieved:",
18
+ "16":":relaxed:",
19
+ "17":":raised_hands:",
20
+ "18":":two_hearts:",
21
+ "19":":expressionless:",
22
+ "20":":sweat_smile:",
23
+ "21":":pray:",
24
+ "22":":confused:",
25
+ "23":":kissing_heart:",
26
+ "24":":hearts:",
27
+ "25":":neutral_face:",
28
+ "26":":information_desk_person:",
29
+ "27":":disappointed:",
30
+ "28":":see_no_evil:",
31
+ "29":":tired_face:",
32
+ "30":":v:",
33
+ "31":":sunglasses:",
34
+ "32":":rage:",
35
+ "33":":thumbsup:",
36
+ "34":":cry:",
37
+ "35":":sleepy:",
38
+ "36":":stuck_out_tongue_winking_eye:",
39
+ "37":":triumph:",
40
+ "38":":raised_hand:",
41
+ "39":":mask:",
42
+ "40":":clap:",
43
+ "41":":eyes:",
44
+ "42":":gun:",
45
+ "43":":persevere:",
46
+ "44":":imp:",
47
+ "45":":sweat:",
48
+ "46":":broken_heart:",
49
+ "47":":blue_heart:",
50
+ "48":":headphones:",
51
+ "49":":speak_no_evil:",
52
+ "50":":wink:",
53
+ "51":":skull:",
54
+ "52":":confounded:",
55
+ "53":":smile:",
56
+ "54":":stuck_out_tongue_winking_eye:",
57
+ "55":":angry:",
58
+ "56":":no_good:",
59
+ "57":":muscle:",
60
+ "58":":punch:",
61
+ "59":":purple_heart:",
62
+ "60":":sparkling_heart:",
63
+ "61":":blue_heart:",
64
+ "62":":grimacing:",
65
+ "63":":sparkles:"
66
+ }
67
+
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/LICENSE.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ New BSD License
2
+
3
+ Copyright (c) 2014-2023, Taehoon Kim, Kevin Wurster
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ * Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ * Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ * The names of its contributors may not be used to endorse or promote products
17
+ derived from this software without specific prior written permission.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/METADATA ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: emoji
3
+ Version: 2.8.0
4
+ Summary: Emoji for Python
5
+ Home-page: https://github.com/carpedm20/emoji/
6
+ Author: Taehoon Kim, Kevin Wurster
7
+ Author-email: [email protected]
8
+ License: New BSD
9
+ Keywords: emoji
10
+ Classifier: Development Status :: 5 - Production/Stable
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Intended Audience :: Information Technology
13
+ Classifier: License :: OSI Approved :: BSD License
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.6
17
+ Classifier: Programming Language :: Python :: 3.7
18
+ Classifier: Programming Language :: Python :: 3.8
19
+ Classifier: Programming Language :: Python :: 3.9
20
+ Classifier: Programming Language :: Python :: 3.10
21
+ Classifier: Programming Language :: Python :: 3.11
22
+ Classifier: Programming Language :: Python :: Implementation :: CPython
23
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
24
+ Classifier: Programming Language :: Python
25
+ Classifier: Topic :: Internet :: WWW/HTTP :: Dynamic Content
26
+ Classifier: Topic :: Multimedia :: Graphics :: Presentation
27
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
28
+ Classifier: Typing :: Typed
29
+ Requires-Python: >=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*
30
+ License-File: LICENSE.txt
31
+ Provides-Extra: dev
32
+ Requires-Dist: pytest ; extra == 'dev'
33
+ Requires-Dist: coverage ; extra == 'dev'
34
+ Requires-Dist: coveralls ; extra == 'dev'
35
+
36
+ Emoji
37
+ =====
38
+
39
+ Emoji for Python. This project was inspired by `kyokomi <https://github.com/kyokomi/emoji>`__.
40
+
41
+
42
+ Example
43
+ -------
44
+
45
+ The entire set of Emoji codes as defined by the `Unicode consortium <https://unicode.org/emoji/charts/full-emoji-list.html>`__
46
+ is supported in addition to a bunch of `aliases <https://www.webfx.com/tools/emoji-cheat-sheet/>`__. By
47
+ default, only the official list is enabled but doing ``emoji.emojize(language='alias')`` enables
48
+ both the full list and aliases.
49
+
50
+ .. code-block:: python
51
+
52
+ >>> import emoji
53
+ >>> print(emoji.emojize('Python is :thumbs_up:'))
54
+ Python is πŸ‘
55
+ >>> print(emoji.emojize('Python is :thumbsup:', language='alias'))
56
+ Python is πŸ‘
57
+ >>> print(emoji.demojize('Python is πŸ‘'))
58
+ Python is :thumbs_up:
59
+ >>> print(emoji.emojize("Python is fun :red_heart:"))
60
+ Python is fun ❀
61
+ >>> print(emoji.emojize("Python is fun :red_heart:", variant="emoji_type"))
62
+ Python is fun ❀️ #red heart, not black heart
63
+ >>> print(emoji.is_emoji("πŸ‘"))
64
+ True
65
+
66
+ ..
67
+
68
+ By default, the language is English (``language='en'``) but also supported languages are:
69
+
70
+ * Spanish (``'es'``)
71
+ * Portuguese (``'pt'``)
72
+ * Italian (``'it'``)
73
+ * French (``'fr'``)
74
+ * German (``'de'``)
75
+ * Farsi/Persian (``'fa'``)
76
+ * Indonesian (``'id'``)
77
+ * Simplified Chinese (``'zh'``)
78
+ * Japanese (``'ja'``)
79
+ * Korean (``'ko'``)
80
+
81
+
82
+ .. code-block:: python
83
+
84
+ >>> print(emoji.emojize('Python es :pulgar_hacia_arriba:', language='es'))
85
+ Python es πŸ‘
86
+ >>> print(emoji.demojize('Python es πŸ‘', language='es'))
87
+ Python es :pulgar_hacia_arriba:
88
+ >>> print(emoji.emojize("Python Γ© :polegar_para_cima:", language='pt'))
89
+ Python Γ© πŸ‘
90
+ >>> print(emoji.demojize("Python Γ© πŸ‘", language='pt'))
91
+ Python é :polegar_para_cima:️
92
+
93
+ ..
94
+
95
+ Installation
96
+ ------------
97
+
98
+ Via pip:
99
+
100
+ .. code-block:: console
101
+
102
+ $ python -m pip install emoji --upgrade
103
+
104
+ From master branch:
105
+
106
+ .. code-block:: console
107
+
108
+ $ git clone https://github.com/carpedm20/emoji.git
109
+ $ cd emoji
110
+ $ python -m pip install .
111
+
112
+
113
+ Developing
114
+ ----------
115
+
116
+ .. code-block:: console
117
+
118
+ $ git clone https://github.com/carpedm20/emoji.git
119
+ $ cd emoji
120
+ $ python -m pip install -e .\[dev\]
121
+ $ pytest
122
+ $ coverage run -m pytest
123
+ $ coverage report
124
+
125
+ The ``utils/get_codes_from_unicode_emoji_data_files.py`` is used to generate
126
+ ``unicode_codes/data_dict.py``. Generally speaking it scrapes a table on the
127
+ `Unicode Consortium's website <https://www.unicode.org/reports/tr51/#emoji_data>`__
128
+ with `BeautifulSoup <http://www.crummy.com/software/BeautifulSoup/>`__
129
+ and prints the contents to ``stdout`` as a Python dictionary. For more
130
+ information take a look in the `utils/README.md <utils/README.md>`__ file.
131
+
132
+
133
+ Links
134
+ -----
135
+
136
+ **Documentation**
137
+
138
+ `https://carpedm20.github.io/emoji/docs/ <https://carpedm20.github.io/emoji/docs/>`__
139
+
140
+ **Overview of all emoji:**
141
+
142
+ `https://carpedm20.github.io/emoji/ <https://carpedm20.github.io/emoji/>`__
143
+
144
+ (auto-generated list of the emoji that are supported by the current version of this package)
145
+
146
+ **For English:**
147
+
148
+ `Emoji Cheat Sheet <https://www.webfx.com/tools/emoji-cheat-sheet/>`__
149
+
150
+ `Official Unicode list <http://www.unicode.org/emoji/charts/full-emoji-list.html>`__
151
+
152
+ **For Spanish:**
153
+
154
+ `Unicode list <https://emojiterra.com/es/lista-es/>`__
155
+
156
+ **For Portuguese:**
157
+
158
+ `Unicode list <https://emojiterra.com/pt/lista/>`__
159
+
160
+ **For Italian:**
161
+
162
+ `Unicode list <https://emojiterra.com/it/lista-it/>`__
163
+
164
+ **For French:**
165
+
166
+ `Unicode list <https://emojiterra.com/fr/liste-fr/>`__
167
+
168
+ **For German:**
169
+
170
+ `Unicode list <https://emojiterra.com/de/liste/>`__
171
+
172
+
173
+ Authors
174
+ -------
175
+
176
+ Taehoon Kim / `@carpedm20 <http://carpedm20.github.io/about/>`__
177
+
178
+ Kevin Wurster / `@geowurster <http://twitter.com/geowurster/>`__
179
+
180
+ Maintainer
181
+ ----------
182
+ Tahir Jalilov / `@TahirJalilov <https://github.com/TahirJalilov>`__
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/RECORD ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ emoji-2.8.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ emoji-2.8.0.dist-info/LICENSE.txt,sha256=4MY4T6OKBxBrTgAP-CcWXbBrXfB0AbsWoYWJIcg4B8w,1483
3
+ emoji-2.8.0.dist-info/METADATA,sha256=KN7KUqGmtWikpf_Y_xyy1_QKQjnm848vLMZvHAno5S4,5279
4
+ emoji-2.8.0.dist-info/RECORD,,
5
+ emoji-2.8.0.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ emoji-2.8.0.dist-info/WHEEL,sha256=m9WAupmBd2JGDsXWQGJgMGXIWbQY3F5c2xBJbBhq0nY,110
7
+ emoji-2.8.0.dist-info/top_level.txt,sha256=UxKwtYLYBTA8ldfisbxvrXDgSz3eVBOq51i2h2ewato,6
8
+ emoji-2.8.0.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
9
+ emoji/__init__.py,sha256=oTfIYyWbRTIasfAY9smrDjojv4-B1IZ9Iyvb3byY2-Q,2358
10
+ emoji/__init__.pyi,sha256=1cDfESqCdRhx5WZoqibhao3maHpYXzE6hnfVV3PM4RY,929
11
+ emoji/__pycache__/__init__.cpython-311.pyc,,
12
+ emoji/__pycache__/core.cpython-311.pyc,,
13
+ emoji/__pycache__/tokenizer.cpython-311.pyc,,
14
+ emoji/core.py,sha256=W82lTuBGprXACnB4DEr3Lm8gbA5gV4JCgLnzPCxyBSk,13856
15
+ emoji/core.pyi,sha256=c_Zl07Rk9sVK_ZI3LMzPMgYfYHtGWn2JIftyCzzf9a4,1310
16
+ emoji/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
+ emoji/tokenizer.py,sha256=AXEgXpxdL_RYmRCl_Xl8m5jDQlN3hyXi6QN2fV6m104,11876
18
+ emoji/tokenizer.pyi,sha256=s76ejAXHxd9lNs4h4ey7MCBHLfeJyxoJRrDSKUwb6UQ,1201
19
+ emoji/unicode_codes/__init__.py,sha256=DOEFYlvT-18AjU4P8G9F8H1Bcjpj0mHiwjFh0JZoaiA,1291
20
+ emoji/unicode_codes/__init__.pyi,sha256=hH9q27ed2a45IHQ1tKPdMymb6l2IWL3BTJlL8bx8rY4,243
21
+ emoji/unicode_codes/__pycache__/__init__.cpython-311.pyc,,
22
+ emoji/unicode_codes/__pycache__/data_dict.cpython-311.pyc,,
23
+ emoji/unicode_codes/data_dict.py,sha256=IQAIkhb7TQqIdxulG4AJxII4BiGFDI3Ns67S49x0SP8,3135614
24
+ emoji/unicode_codes/data_dict.pyi,sha256=HiU_YbtX-SphSyD4ZZ2_veRbZ2OP9i08TAjiESdE8ng,155
25
+ emoji/unicode_codes/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/REQUESTED ADDED
File without changes
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/WHEEL ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.41.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py2-none-any
5
+ Tag: py3-none-any
6
+
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ emoji
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji-2.8.0.dist-info/zip-safe ADDED
@@ -0,0 +1 @@
 
 
1
+
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ emoji for Python
3
+ ~~~~~~~~~~~~~~~~
4
+
5
+ emoji terminal output for Python.
6
+
7
+ >>> import emoji
8
+ >>> print(emoji.emojize('Python is :thumbsup:', language='alias'))
9
+ Python is πŸ‘
10
+ >>> print(emoji.emojize('Python is :thumbs_up:'))
11
+ Python is πŸ‘
12
+ """
13
+
14
+
15
+ from emoji.core import *
16
+ from emoji.unicode_codes import *
17
+
18
+ __all__ = [
19
+ # emoji.core
20
+ 'emojize', 'demojize', 'analyze', 'config',
21
+ 'emoji_list', 'distinct_emoji_list', 'emoji_count',
22
+ 'replace_emoji', 'is_emoji', 'purely_emoji', 'version',
23
+ 'Token', 'EmojiMatch', 'EmojiMatchZWJ', 'EmojiMatchZWJNonRGI',
24
+ # emoji.unicode_codes
25
+ 'EMOJI_DATA', 'STATUS', 'LANGUAGES',
26
+ ]
27
+
28
+ __version__ = '2.8.0'
29
+ __author__ = 'Taehoon Kim, Kevin Wurster'
30
+ __email__ = '[email protected]'
31
32
+ __source__ = 'https://github.com/carpedm20/emoji/'
33
+ __license__ = '''
34
+ New BSD License
35
+
36
+ Copyright (c) 2014-2023, Taehoon Kim, Kevin Wurster
37
+ All rights reserved.
38
+
39
+ Redistribution and use in source and binary forms, with or without
40
+ modification, are permitted provided that the following conditions are met:
41
+
42
+ * Redistributions of source code must retain the above copyright notice, this
43
+ list of conditions and the following disclaimer.
44
+
45
+ * Redistributions in binary form must reproduce the above copyright notice,
46
+ this list of conditions and the following disclaimer in the documentation
47
+ and/or other materials provided with the distribution.
48
+
49
+ * The names of its contributors may not be used to endorse or promote products
50
+ derived from this software without specific prior written permission.
51
+
52
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
53
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
55
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
56
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
58
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
59
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
60
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62
+ '''
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/__init__.pyi ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .core import (
2
+ demojize as demojize,
3
+ distinct_emoji_list as distinct_emoji_list,
4
+ emoji_count as emoji_count,
5
+ emoji_list as emoji_list,
6
+ emojize as emojize,
7
+ is_emoji as is_emoji,
8
+ replace_emoji as replace_emoji,
9
+ version as version,
10
+ analyze as analyze,
11
+ config as config,
12
+ )
13
+ from .tokenizer import (
14
+ Token as Token,
15
+ EmojiMatch as EmojiMatch,
16
+ EmojiMatchZWJ as EmojiMatchZWJ,
17
+ EmojiMatchZWJNonRGI as EmojiMatchZWJNonRGI,
18
+ )
19
+
20
+
21
+ from .unicode_codes import EMOJI_DATA, LANGUAGES, STATUS
22
+
23
+ __all__ = [
24
+ # emoji.core
25
+ 'emojize', 'demojize', 'analyze', 'config',
26
+ 'emoji_list', 'distinct_emoji_list', 'emoji_count',
27
+ 'replace_emoji', 'is_emoji', 'version',
28
+ 'Token', 'EmojiMatch', 'EmojiMatchZWJ', 'EmojiMatchZWJNonRGI',
29
+ # emoji.unicode_codes
30
+ 'EMOJI_DATA', 'STATUS', 'LANGUAGES',
31
+ ]
32
+
33
+ __version__: str
34
+ __author__: str
35
+ __email__: str
36
+ __source__: str
37
+ __license__: str
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/core.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ emoji.core
3
+ ~~~~~~~~~~
4
+
5
+ Core components for emoji.
6
+
7
+ """
8
+
9
+ import re
10
+ import unicodedata
11
+ from typing import Iterator
12
+
13
+ from emoji import unicode_codes
14
+ from emoji.tokenizer import Token, EmojiMatch, EmojiMatchZWJ, EmojiMatchZWJNonRGI, tokenize, filter_tokens
15
+
16
+ __all__ = [
17
+ 'emojize', 'demojize', 'analyze', 'config',
18
+ 'emoji_list', 'distinct_emoji_list', 'emoji_count',
19
+ 'replace_emoji', 'is_emoji', 'purely_emoji', 'version',
20
+ 'Token', 'EmojiMatch', 'EmojiMatchZWJ', 'EmojiMatchZWJNonRGI',
21
+ ]
22
+
23
+ _DEFAULT_DELIMITER = ':'
24
+ _EMOJI_NAME_PATTERN = '\\w\\-&.β€™β€β€œ()!#*+,/«»\u0300\u0301\u0302\u0303\u0308\u030a\u0327\u064b\u064e\u064f\u0650\u0653\u0654\u3099\u30fb\u309a'
25
+
26
+
27
+ class config():
28
+ """Module-wide configuration"""
29
+
30
+ demojize_keep_zwj = True
31
+ """Change the behavior of :func:`emoji.demojize()` regarding
32
+ zero-width-joiners (ZWJ/``\\u200D``) in emoji that are not
33
+ "recommended for general interchange" (non-RGI).
34
+ It has no effect on RGI emoji.
35
+
36
+ For example this family emoji with different skin tones "πŸ‘¨β€πŸ‘©πŸΏβ€πŸ‘§πŸ»β€πŸ‘¦πŸΎ" contains four
37
+ person emoji that are joined together by three ZWJ characters:
38
+ ``πŸ‘¨\\u200DπŸ‘©πŸΏ\\u200DπŸ‘§πŸ»\\u200DπŸ‘¦πŸΎ``
39
+
40
+ If ``True``, the zero-width-joiners will be kept and :func:`emoji.emojize()` can
41
+ reverse the :func:`emoji.demojize()` operation:
42
+ ``emoji.emojize(emoji.demojize(s)) == s``
43
+
44
+ The example emoji would be converted to
45
+ ``:man:\\u200d:woman_dark_skin_tone:\\u200d:girl_light_skin_tone:\\u200d:boy_medium-dark_skin_tone:``
46
+
47
+ If ``False``, the zero-width-joiners will be removed and :func:`emoji.emojize()`
48
+ can only reverse the individual emoji: ``emoji.emojize(emoji.demojize(s)) != s``
49
+
50
+ The example emoji would be converted to
51
+ ``:man::woman_dark_skin_tone::girl_light_skin_tone::boy_medium-dark_skin_tone:``
52
+ """
53
+
54
+ replace_emoji_keep_zwj = False
55
+ """Change the behavior of :func:`emoji.replace_emoji()` regarding
56
+ zero-width-joiners (ZWJ/``\\u200D``) in emoji that are not
57
+ "recommended for general interchange" (non-RGI).
58
+ It has no effect on RGI emoji.
59
+
60
+ See :attr:`config.demojize_keep_zwj` for more information.
61
+ """
62
+
63
+
64
+ def emojize(
65
+ string,
66
+ delimiters=(_DEFAULT_DELIMITER, _DEFAULT_DELIMITER),
67
+ variant=None,
68
+ language='en',
69
+ version=None,
70
+ handle_version=None
71
+ ):
72
+ """
73
+ Replace emoji names in a string with Unicode codes.
74
+ >>> import emoji
75
+ >>> print(emoji.emojize("Python is fun :thumbsup:", language='alias'))
76
+ Python is fun πŸ‘
77
+ >>> print(emoji.emojize("Python is fun :thumbs_up:"))
78
+ Python is fun πŸ‘
79
+ >>> print(emoji.emojize("Python is fun {thumbs_up}", delimiters = ("{", "}")))
80
+ Python is fun πŸ‘
81
+ >>> print(emoji.emojize("Python is fun :red_heart:", variant="text_type"))
82
+ Python is fun ❀
83
+ >>> print(emoji.emojize("Python is fun :red_heart:", variant="emoji_type"))
84
+ Python is fun ❀️ # red heart, not black heart
85
+
86
+ :param string: String contains emoji names.
87
+ :param delimiters: (optional) Use delimiters other than _DEFAULT_DELIMITER. Each delimiter
88
+ should contain at least one character that is not part of a-zA-Z0-9 and ``_-&.()!?#*+,``.
89
+ See ``emoji.core._EMOJI_NAME_PATTERN`` for the regular expression of unsafe characters.
90
+ :param variant: (optional) Choose variation selector between "base"(None), VS-15 ("text_type") and VS-16 ("emoji_type")
91
+ :param language: Choose language of emoji name: language code 'es', 'de', etc. or 'alias'
92
+ to use English aliases
93
+ :param version: (optional) Max version. If set to an Emoji Version,
94
+ all emoji above this version will be ignored.
95
+ :param handle_version: (optional) Replace the emoji above ``version``
96
+ instead of ignoring it. handle_version can be either a string or a
97
+ callable; If it is a callable, it's passed the Unicode emoji and the
98
+ data dict from :data:`EMOJI_DATA` and must return a replacement string
99
+ to be used::
100
+
101
+ handle_version('\\U0001F6EB', {
102
+ 'en' : ':airplane_departure:',
103
+ 'status' : fully_qualified,
104
+ 'E' : 1,
105
+ 'alias' : [':flight_departure:'],
106
+ 'de': ':abflug:',
107
+ 'es': ':aviΓ³n_despegando:',
108
+ ...
109
+ })
110
+
111
+ :raises ValueError: if ``variant`` is neither None, 'text_type' or 'emoji_type'
112
+
113
+ """
114
+
115
+ if language == 'alias':
116
+ language_pack = unicode_codes.get_aliases_unicode_dict()
117
+ else:
118
+ language_pack = unicode_codes.get_emoji_unicode_dict(language)
119
+
120
+ pattern = re.compile('(%s[%s]+%s)' %
121
+ (re.escape(delimiters[0]), _EMOJI_NAME_PATTERN, re.escape(delimiters[1])))
122
+
123
+ def replace(match):
124
+ name = match.group(1)[len(delimiters[0]):-len(delimiters[1])]
125
+ emj = language_pack.get(
126
+ _DEFAULT_DELIMITER +
127
+ unicodedata.normalize('NFKC', name) +
128
+ _DEFAULT_DELIMITER)
129
+ if emj is None:
130
+ return match.group(1)
131
+
132
+ if version is not None and unicode_codes.EMOJI_DATA[emj]['E'] > version:
133
+ if callable(handle_version):
134
+ emj_data = unicode_codes.EMOJI_DATA[emj].copy()
135
+ emj_data['match_start'] = match.start()
136
+ emj_data['match_end'] = match.end()
137
+ return handle_version(emj, emj_data)
138
+
139
+ elif handle_version is not None:
140
+ return str(handle_version)
141
+ else:
142
+ return ''
143
+
144
+ if variant is None or 'variant' not in unicode_codes.EMOJI_DATA[emj]:
145
+ return emj
146
+
147
+ if emj[-1] == '\uFE0E' or emj[-1] == '\uFE0F':
148
+ # Remove an existing variant
149
+ emj = emj[0:-1]
150
+ if variant == "text_type":
151
+ return emj + '\uFE0E'
152
+ elif variant == "emoji_type":
153
+ return emj + '\uFE0F'
154
+ else:
155
+ raise ValueError(
156
+ "Parameter 'variant' must be either None, 'text_type' or 'emoji_type'")
157
+
158
+ return pattern.sub(replace, string)
159
+
160
+
161
+ def analyze(string: str, non_emoji: bool = False, join_emoji: bool = True) -> Iterator[Token]:
162
+ """
163
+ Find unicode emoji in a string. Yield each emoji as a named tuple
164
+ :class:`Token` ``(chars, EmojiMatch)`` or `:class:`Token` ``(chars, EmojiMatchZWJNonRGI)``.
165
+ If ``non_emoji`` is True, also yield all other characters as
166
+ :class:`Token` ``(char, char)`` .
167
+
168
+ :param string: String to analyze
169
+ :param non_emoji: If True also yield all non-emoji characters as Token(char, char)
170
+ :param join_emoji: If True, multiple EmojiMatch are merged into a single
171
+ EmojiMatchZWJNonRGI if they are separated only by a ZWJ.
172
+ """
173
+
174
+ return filter_tokens(
175
+ tokenize(string, keep_zwj=True), emoji_only=not non_emoji, join_emoji=join_emoji)
176
+
177
+
178
+ def demojize(
179
+ string,
180
+ delimiters=(_DEFAULT_DELIMITER, _DEFAULT_DELIMITER),
181
+ language='en',
182
+ version=None,
183
+ handle_version=None
184
+ ):
185
+ """
186
+ Replace Unicode emoji in a string with emoji shortcodes. Useful for storage.
187
+ >>> import emoji
188
+ >>> print(emoji.emojize("Python is fun :thumbs_up:"))
189
+ Python is fun πŸ‘
190
+ >>> print(emoji.demojize("Python is fun πŸ‘"))
191
+ Python is fun :thumbs_up:
192
+ >>> print(emoji.demojize("icode is tricky 😯", delimiters=("__", "__")))
193
+ Unicode is tricky __hushed_face__
194
+
195
+ :param string: String contains Unicode characters. MUST BE UNICODE.
196
+ :param delimiters: (optional) User delimiters other than ``_DEFAULT_DELIMITER``
197
+ :param language: Choose language of emoji name: language code 'es', 'de', etc. or 'alias'
198
+ to use English aliases
199
+ :param version: (optional) Max version. If set to an Emoji Version,
200
+ all emoji above this version will be removed.
201
+ :param handle_version: (optional) Replace the emoji above ``version``
202
+ instead of removing it. handle_version can be either a string or a
203
+ callable ``handle_version(emj: str, data: dict) -> str``; If it is
204
+ a callable, it's passed the Unicode emoji and the data dict from
205
+ :data:`EMOJI_DATA` and must return a replacement string to be used.
206
+ The passed data is in the form of::
207
+
208
+ handle_version('\\U0001F6EB', {
209
+ 'en' : ':airplane_departure:',
210
+ 'status' : fully_qualified,
211
+ 'E' : 1,
212
+ 'alias' : [':flight_departure:'],
213
+ 'de': ':abflug:',
214
+ 'es': ':aviΓ³n_despegando:',
215
+ ...
216
+ })
217
+
218
+ """
219
+
220
+ if language == 'alias':
221
+ language = 'en'
222
+ _use_aliases = True
223
+ else:
224
+ _use_aliases = False
225
+
226
+ def handle(emoji_match):
227
+ if version is not None and emoji_match.data['E'] > version:
228
+ if callable(handle_version):
229
+ return handle_version(emoji_match.emoji, emoji_match.data_copy())
230
+ elif handle_version is not None:
231
+ return handle_version
232
+ else:
233
+ return ''
234
+ elif language in emoji_match.data:
235
+ if _use_aliases and 'alias' in emoji_match.data:
236
+ return delimiters[0] + emoji_match.data['alias'][0][1:-1] + delimiters[1]
237
+ else:
238
+ return delimiters[0] + emoji_match.data[language][1:-1] + delimiters[1]
239
+ else:
240
+ # The emoji exists, but it is not translated, so we keep the emoji
241
+ return emoji_match.emoji
242
+
243
+ matches = tokenize(string, keep_zwj=config.demojize_keep_zwj)
244
+ return "".join(str(handle(token.value)) if isinstance(
245
+ token.value, EmojiMatch) else token.value for token in matches)
246
+
247
+
248
+ def replace_emoji(string, replace='', version=-1):
249
+ """
250
+ Replace Unicode emoji in a customizable string.
251
+
252
+ :param string: String contains Unicode characters. MUST BE UNICODE.
253
+ :param replace: (optional) replace can be either a string or a callable;
254
+ If it is a callable, it's passed the Unicode emoji and the data dict from
255
+ :data:`EMOJI_DATA` and must return a replacement string to be used.
256
+ replace(str, dict) -> str
257
+ :param version: (optional) Max version. If set to an Emoji Version,
258
+ only emoji above this version will be replaced.
259
+ """
260
+
261
+ def handle(emoji_match):
262
+ if version > -1:
263
+ if emoji_match.data['E'] > version:
264
+ if callable(replace):
265
+ return replace(emoji_match.emoji, emoji_match.data_copy())
266
+ else:
267
+ return str(replace)
268
+ elif callable(replace):
269
+ return replace(emoji_match.emoji, emoji_match.data_copy())
270
+ elif replace is not None:
271
+ return replace
272
+ return emoji_match.emoji
273
+
274
+ matches = tokenize(string, keep_zwj=config.replace_emoji_keep_zwj)
275
+ if config.replace_emoji_keep_zwj:
276
+ matches = filter_tokens(
277
+ matches, emoji_only=False, join_emoji=True)
278
+ return "".join(str(handle(m.value)) if isinstance(
279
+ m.value, EmojiMatch) else m.value for m in matches)
280
+
281
+
282
+ def emoji_list(string):
283
+ """
284
+ Returns the location and emoji in list of dict format.
285
+ >>> emoji.emoji_list("Hi, I am fine. 😁")
286
+ [{'match_start': 15, 'match_end': 16, 'emoji': '😁'}]
287
+ """
288
+
289
+ return [{
290
+ 'match_start': m.value.start,
291
+ 'match_end': m.value.end,
292
+ 'emoji': m.value.emoji,
293
+ } for m in tokenize(string, keep_zwj=False) if isinstance(m.value, EmojiMatch)]
294
+
295
+
296
+ def distinct_emoji_list(string):
297
+ """Returns distinct list of emojis from the string."""
298
+ distinct_list = list(
299
+ {e['emoji'] for e in emoji_list(string)}
300
+ )
301
+ return distinct_list
302
+
303
+
304
+ def emoji_count(string, unique=False):
305
+ """
306
+ Returns the count of emojis in a string.
307
+
308
+ :param unique: (optional) True if count only unique emojis
309
+ """
310
+ if unique:
311
+ return len(distinct_emoji_list(string))
312
+ return len(emoji_list(string))
313
+
314
+
315
+ def is_emoji(string):
316
+ """
317
+ Returns True if the string is a single emoji, and it is "recommended for
318
+ general interchange" by Unicode.org.
319
+ """
320
+ return string in unicode_codes.EMOJI_DATA
321
+
322
+
323
+ def purely_emoji(string: str) -> bool:
324
+ """
325
+ Returns True if the string contains only emojis.
326
+ This might not imply that `is_emoji` for all the characters, for example,
327
+ if the string contains variation selectors.
328
+ """
329
+ return all(isinstance(m.value, EmojiMatch) for m in analyze(string, non_emoji=True))
330
+
331
+
332
+ def version(string):
333
+ """
334
+ Returns the Emoji Version of the emoji.
335
+
336
+ See https://www.unicode.org/reports/tr51/#Versioning for more information.
337
+ >>> emoji.version("😁")
338
+ 0.6
339
+ >>> emoji.version(":butterfly:")
340
+ 3
341
+
342
+ :param string: An emoji or a text containing an emoji
343
+ :raises ValueError: if ``string`` does not contain an emoji
344
+ """
345
+ # Try dictionary lookup
346
+ if string in unicode_codes.EMOJI_DATA:
347
+ return unicode_codes.EMOJI_DATA[string]['E']
348
+
349
+ language_pack = unicode_codes.get_emoji_unicode_dict('en')
350
+ if string in language_pack:
351
+ emj_code = language_pack[string]
352
+ if emj_code in unicode_codes.EMOJI_DATA:
353
+ return unicode_codes.EMOJI_DATA[emj_code]['E']
354
+
355
+ # Try to find first emoji in string
356
+ version = []
357
+
358
+ def f(e, emoji_data):
359
+ version.append(emoji_data['E'])
360
+ return ''
361
+ replace_emoji(string, replace=f, version=-1)
362
+ if version:
363
+ return version[0]
364
+ emojize(string, language='alias', version=-1, handle_version=f)
365
+ if version:
366
+ return version[0]
367
+ for lang_code in unicode_codes._EMOJI_UNICODE:
368
+ emojize(string, language=lang_code, version=-1, handle_version=f)
369
+ if version:
370
+ return version[0]
371
+
372
+ raise ValueError("No emoji found in string")
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/core.pyi ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Callable
2
+ from typing_extensions import Literal, TypedDict
3
+ from typing import Iterator
4
+ from .tokenizer import Token
5
+
6
+
7
+ class config:
8
+ demojize_keep_zwj: bool
9
+ replace_emoji_keep_zwj: bool
10
+
11
+
12
+ class _EmojiListReturn(TypedDict):
13
+ emoji: str
14
+ match_start: int
15
+ match_end: int
16
+
17
+
18
+ def emojize(
19
+ string: str,
20
+ delimiters: tuple[str, str] = ...,
21
+ variant: Literal["text_type", "emoji_type", None] = ...,
22
+ language: str = ...,
23
+ version: float | None = ...,
24
+ handle_version: str | Callable[[str, dict[str, str]], str] | None = ...,
25
+ ) -> str: ...
26
+
27
+
28
+ def demojize(
29
+ string: str,
30
+ delimiters: tuple[str, str] = ...,
31
+ language: str = ...,
32
+ version: float | None = ...,
33
+ handle_version: str | Callable[[str, dict[str, str]], str] | None = ...,
34
+ ) -> str: ...
35
+
36
+
37
+ def analyze(string: str, non_emoji: bool,
38
+ join_emoji: bool) -> Iterator[Token]: ...
39
+ def replace_emoji(string: str, replace: str | Callable[[
40
+ str, dict[str, str]], str] = ..., version: float = ...) -> str: ...
41
+
42
+
43
+ def emoji_list(string: str) -> list[_EmojiListReturn]: ...
44
+ def distinct_emoji_list(string: str) -> list[str]: ...
45
+ def emoji_count(string: str, unique: bool = ...) -> int: ...
46
+ def version(string: str) -> float: ...
47
+ def is_emoji(string: str) -> bool: ...
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/py.typed ADDED
File without changes
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/tokenizer.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ emoji.tokenizer
3
+ ~~~~~~~~~~~~~~~
4
+
5
+ Components for detecting and tokenizing emoji in strings.
6
+
7
+ """
8
+ from typing import NamedTuple, Dict, Union, Iterator, Any
9
+ from emoji import unicode_codes
10
+
11
+
12
+ __all__ = [
13
+ 'EmojiMatch', 'EmojiMatchZWJ', 'EmojiMatchZWJNonRGI', 'Token',
14
+ 'tokenize', 'filter_tokens',
15
+ ]
16
+
17
+ _ZWJ = '\u200D'
18
+ _SEARCH_TREE = None
19
+
20
+
21
+ class EmojiMatch:
22
+ """
23
+ Represents a match of a "recommended for general interchange" (RGI)
24
+ emoji in a string.
25
+ """
26
+
27
+ __slots__ = ('emoji', 'start', 'end', 'data')
28
+
29
+ def __init__(self, emoji: str, start: int,
30
+ end: int, data: Union[dict, None]):
31
+
32
+ self.emoji = emoji
33
+ """The emoji substring"""
34
+
35
+ self.start = start
36
+ """The start index of the match in the string"""
37
+
38
+ self.end = end
39
+ """The end index of the match in the string"""
40
+
41
+ self.data = data
42
+ """The entry from :data:`EMOJI_DATA` for this emoji or ``None`` if the emoji is non-RGI"""
43
+
44
+ def data_copy(self) -> Dict[str, Any]:
45
+ """
46
+ Returns a copy of the data from :data:`EMOJI_DATA` for this match
47
+ with the additional keys ``match_start`` and ``match_end``.
48
+ """
49
+ if self.data:
50
+ emj_data = self.data.copy()
51
+ emj_data['match_start'] = self.start
52
+ emj_data['match_end'] = self.end
53
+ return emj_data
54
+ else:
55
+ return {
56
+ 'match_start': self.start,
57
+ 'match_end': self.end
58
+ }
59
+
60
+ def is_zwj(self) -> bool:
61
+ """
62
+ Checks if this is a ZWJ-emoji.
63
+
64
+ :returns: True if this is a ZWJ-emoji, False otherwise
65
+ """
66
+
67
+ return _ZWJ in self.emoji
68
+
69
+ def split(self) -> Union['EmojiMatchZWJ', 'EmojiMatch']:
70
+ """
71
+ Splits a ZWJ-emoji into its constituents.
72
+
73
+ :returns: An :class:`EmojiMatchZWJ` containing the "sub-emoji" if this is a ZWJ-emoji, otherwise self
74
+ """
75
+
76
+ if self.is_zwj():
77
+ return EmojiMatchZWJ(self)
78
+ else:
79
+ return self
80
+
81
+ def __repr__(self) -> str:
82
+ return f'{self.__class__.__name__}({self.emoji}, {self.start}:{self.end})'
83
+
84
+
85
+ class EmojiMatchZWJ(EmojiMatch):
86
+ """
87
+ Represents a match of multiple emoji in a string that were joined by
88
+ zero-width-joiners (ZWJ/``\\u200D``)."""
89
+
90
+ __slots__ = ('emojis', )
91
+
92
+ def __init__(self, match: EmojiMatch):
93
+ super().__init__(match.emoji, match.start, match.end, match.data)
94
+
95
+ self.emojis = []
96
+ """List of sub emoji as EmojiMatch objects"""
97
+
98
+ i = match.start
99
+ for e in match.emoji.split(_ZWJ):
100
+ m = EmojiMatch(
101
+ e, i, i+len(e), unicode_codes.EMOJI_DATA.get(e, None))
102
+ self.emojis.append(m)
103
+ i += len(e) + 1
104
+
105
+ def join(self) -> str:
106
+ """
107
+ Joins a ZWJ-emoji into a string
108
+ """
109
+
110
+ return _ZWJ.join(e.emoji for e in self.emojis)
111
+
112
+ def is_zwj(self) -> bool:
113
+ return True
114
+
115
+ def split(self) -> 'EmojiMatchZWJ':
116
+ return self
117
+
118
+ def __repr__(self) -> str:
119
+ return f'{self.__class__.__name__}({self.join()}, {self.start}:{self.end})'
120
+
121
+
122
+ class EmojiMatchZWJNonRGI(EmojiMatchZWJ):
123
+ """
124
+ Represents a match of multiple emoji in a string that were joined by
125
+ zero-width-joiners (ZWJ/``\\u200D``). This class is only used for emoji
126
+ that are not "recommended for general interchange" (non-RGI) by Unicode.org.
127
+ The data property of this class is always None.
128
+ """
129
+
130
+ def __init__(self, first_emoji_match: EmojiMatch,
131
+ second_emoji_match: EmojiMatch):
132
+
133
+ self.emojis = [first_emoji_match, second_emoji_match]
134
+ """List of sub emoji as EmojiMatch objects"""
135
+
136
+ self._update()
137
+
138
+ def _update(self):
139
+ self.emoji = _ZWJ.join(e.emoji for e in self.emojis)
140
+ self.start = self.emojis[0].start
141
+ self.end = self.emojis[-1].end
142
+ self.data = None
143
+
144
+ def _add(self, next_emoji_match: EmojiMatch):
145
+ self.emojis.append(next_emoji_match)
146
+ self._update()
147
+
148
+
149
+ class Token(NamedTuple):
150
+ """
151
+ A named tuple containing the matched string and its :class:`EmojiMatch` object if it is an emoji
152
+ or a single character that is not a unicode emoji.
153
+ """
154
+ chars: str
155
+ value: Union[str, EmojiMatch]
156
+
157
+
158
+ def tokenize(string, keep_zwj: bool) -> Iterator[Token]:
159
+ """
160
+ Finds unicode emoji in a string. Yields all normal characters as a named
161
+ tuple :class:`Token` ``(char, char)`` and all emoji as :class:`Token` ``(chars, EmojiMatch)``.
162
+
163
+ :param string: String contains unicode characters. MUST BE UNICODE.
164
+ :param keep_zwj: Should ZWJ-characters (``\\u200D``) that join non-RGI emoji be
165
+ skipped or should be yielded as normal characters
166
+ :return: An iterable of tuples :class:`Token` ``(char, char)`` or :class:`Token` ``(chars, EmojiMatch)``
167
+ """
168
+
169
+ tree = get_search_tree()
170
+ EMOJI_DATA = unicode_codes.EMOJI_DATA
171
+ # result: [ Token(oldsubstring0, EmojiMatch), Token(char1, char1), ... ]
172
+ result = []
173
+ i = 0
174
+ length = len(string)
175
+ ignore = [] # index of chars in string that are skipped, i.e. the ZWJ-char in non-RGI-ZWJ-sequences
176
+ while i < length:
177
+ consumed = False
178
+ char = string[i]
179
+ if i in ignore:
180
+ i += 1
181
+ if char == _ZWJ and keep_zwj:
182
+ result.append(Token(char, char))
183
+ continue
184
+
185
+ elif char in tree:
186
+ j = i + 1
187
+ sub_tree = tree[char]
188
+ while j < length and string[j] in sub_tree:
189
+ if j in ignore:
190
+ break
191
+ sub_tree = sub_tree[string[j]]
192
+ j += 1
193
+ if 'data' in sub_tree:
194
+ emj_data = sub_tree['data']
195
+ code_points = string[i:j]
196
+
197
+ # We cannot yield the result here, we need to defer
198
+ # the call until we are sure that the emoji is finished
199
+ # i.e. we're not inside an ongoing ZWJ-sequence
200
+ match_obj = EmojiMatch(code_points, i, j, emj_data)
201
+
202
+ i = j - 1
203
+ consumed = True
204
+ result.append(Token(code_points, match_obj))
205
+
206
+ elif char == _ZWJ and result and result[-1].chars in EMOJI_DATA and i > 0 and string[i - 1] in tree:
207
+ # the current char is ZWJ and the last match was an emoji
208
+ ignore.append(i)
209
+ if EMOJI_DATA[result[-1].chars]["status"] == unicode_codes.STATUS["component"]:
210
+ # last match was a component, it could be ZWJ+EMOJI+COMPONENT
211
+ # or ZWJ+COMPONENT
212
+ i = i - sum(len(t.chars) for t in result[-2:])
213
+ if string[i] == _ZWJ:
214
+ # It's ZWJ+COMPONENT, move one back
215
+ i += 1
216
+ del result[-1]
217
+ else:
218
+ # It's ZWJ+EMOJI+COMPONENT, move two back
219
+ del result[-2:]
220
+ else:
221
+ # last match result[-1] was a normal emoji, move cursor
222
+ # before the emoji
223
+ i = i - len(result[-1].chars)
224
+ del result[-1]
225
+ continue
226
+
227
+ elif result:
228
+ yield from result
229
+ result = []
230
+
231
+ if not consumed and char != '\uFE0E' and char != '\uFE0F':
232
+ result.append(Token(char, char))
233
+ i += 1
234
+
235
+ yield from result
236
+
237
+
238
+ def filter_tokens(matches: Iterator[Token], emoji_only: bool, join_emoji: bool) -> Iterator[Token]:
239
+ """
240
+ Filters the output of `tokenize()`
241
+
242
+ :param matches: An iterable of tuples of the form ``(match_str, result)``
243
+ where ``result`` is either an EmojiMatch or a string.
244
+ :param emoji_only: If True, only EmojiMatch are returned in the output.
245
+ If False all characters are returned
246
+ :param join_emoji: If True, multiple EmojiMatch are merged into
247
+ a single :class:`EmojiMatchZWJNonRGI` if they are separated only by a ZWJ.
248
+
249
+ :return: An iterable of tuples :class:`Token` ``(char, char)``,
250
+ :class:`Token` ``(chars, EmojiMatch)`` or :class:`Token` ``(chars, EmojiMatchZWJNonRGI)``
251
+ """
252
+
253
+ if not join_emoji and not emoji_only:
254
+ yield from matches
255
+ return
256
+
257
+ if not join_emoji:
258
+ for token in matches:
259
+ if token.chars != _ZWJ:
260
+ yield token
261
+ return
262
+
263
+ # Combine multiple EmojiMatch that are separated by ZWJs into
264
+ # a single EmojiMatchZWJNonRGI
265
+ previous_is_emoji = False
266
+ previous_is_zwj = False
267
+ pre_previous_is_emoji = False
268
+ accumulator = []
269
+ for token in matches:
270
+ pre_previous_is_emoji = previous_is_emoji
271
+ if previous_is_emoji and token.value == _ZWJ:
272
+ previous_is_zwj = True
273
+ elif isinstance(token.value, EmojiMatch):
274
+ if pre_previous_is_emoji and previous_is_zwj:
275
+ if isinstance(accumulator[-1].value, EmojiMatchZWJNonRGI):
276
+ accumulator[-1].value._add(token.value)
277
+ accumulator[-1] = Token(accumulator[-1].chars +
278
+ _ZWJ + token.chars, accumulator[-1].value)
279
+ else:
280
+ prev = accumulator.pop()
281
+ accumulator.append(
282
+ Token(prev.chars + _ZWJ + token.chars,
283
+ EmojiMatchZWJNonRGI(
284
+ prev.value,
285
+ token.value)))
286
+ else:
287
+ accumulator.append(token)
288
+ previous_is_emoji = True
289
+ previous_is_zwj = False
290
+ else:
291
+ # Other character, not an emoji
292
+ previous_is_emoji = False
293
+ previous_is_zwj = False
294
+ yield from accumulator
295
+ if not emoji_only:
296
+ yield token
297
+ accumulator = []
298
+ yield from accumulator
299
+
300
+
301
+ def get_search_tree() -> Dict[str, Any]:
302
+ """
303
+ Generate a search tree for demojize().
304
+ Example of a search tree::
305
+
306
+ EMOJI_DATA =
307
+ {'a': {'en': ':Apple:'},
308
+ 'b': {'en': ':Bus:'},
309
+ 'ba': {'en': ':Bat:'},
310
+ 'band': {'en': ':Beatles:'},
311
+ 'bandit': {'en': ':Outlaw:'},
312
+ 'bank': {'en': ':BankOfEngland:'},
313
+ 'bb': {'en': ':BB-gun:'},
314
+ 'c': {'en': ':Car:'}}
315
+
316
+ _SEARCH_TREE =
317
+ {'a': {'data': {'en': ':Apple:'}},
318
+ 'b': {'a': {'data': {'en': ':Bat:'},
319
+ 'n': {'d': {'data': {'en': ':Beatles:'},
320
+ 'i': {'t': {'data': {'en': ':Outlaw:'}}}},
321
+ 'k': {'data': {'en': ':BankOfEngland:'}}}},
322
+ 'b': {'data': {'en': ':BB-gun:'}},
323
+ 'data': {'en': ':Bus:'}},
324
+ 'c': {'data': {'en': ':Car:'}}}
325
+
326
+ _SEARCH_TREE
327
+ / | ⧡
328
+ / | ⧡
329
+ a b c
330
+ | / | ⧡ |
331
+ | / | ⧡ |
332
+ :Apple: ba :Bus: bb :Car:
333
+ / ⧡ |
334
+ / ⧡ |
335
+ :Bat: ban :BB-gun:
336
+ / ⧡
337
+ / ⧡
338
+ band bank
339
+ / ⧡ |
340
+ / ⧡ |
341
+ bandi :Beatles: :BankOfEngland:
342
+ |
343
+ bandit
344
+ |
345
+ :Outlaw:
346
+
347
+
348
+ """
349
+ global _SEARCH_TREE
350
+ if _SEARCH_TREE is None:
351
+ _SEARCH_TREE = {}
352
+ for emj in unicode_codes.EMOJI_DATA:
353
+ sub_tree = _SEARCH_TREE
354
+ lastidx = len(emj) - 1
355
+ for i, char in enumerate(emj):
356
+ if char not in sub_tree:
357
+ sub_tree[char] = {}
358
+ sub_tree = sub_tree[char]
359
+ if i == lastidx:
360
+ sub_tree['data'] = unicode_codes.EMOJI_DATA[emj]
361
+ return _SEARCH_TREE
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/tokenizer.pyi ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import NamedTuple, Union, Dict, Iterator, Any
2
+
3
+ _SearchTree = Dict[str, Union['_SearchTree', dict[str, dict[str, Any]]]]
4
+
5
+ _SEARCH_TREE: _SearchTree
6
+
7
+
8
+ class EmojiMatch:
9
+ emoji: str
10
+ start: int
11
+ end: int
12
+ data: dict[str, Any] | None
13
+ def __init__(self, emoji: str, start: int,
14
+ end: int, data: dict | None): ...
15
+
16
+ def data_copy(self) -> Dict[str, Any]: ...
17
+ def is_zwj(self) -> bool: ...
18
+ def split(self) -> EmojiMatchZWJ | EmojiMatch: ...
19
+ def __repr__(self) -> str: ...
20
+
21
+
22
+ class EmojiMatchZWJ(EmojiMatch):
23
+ def __init__(self, match: EmojiMatch): ...
24
+ def join(self) -> str: ...
25
+ def is_zwj(self) -> bool: ...
26
+ def split(self) -> EmojiMatchZWJ: ...
27
+ def __repr__(self) -> str: ...
28
+
29
+
30
+ class EmojiMatchZWJNonRGI(EmojiMatchZWJ):
31
+ def __init__(self, first_emoji_match: EmojiMatch,
32
+ second_emoji_match: EmojiMatch): ...
33
+
34
+
35
+ class Token(NamedTuple):
36
+ chars: str
37
+ value: str | EmojiMatch
38
+
39
+
40
+ def tokenize(string, keep_zwj: bool) -> Iterator[Token]: ...
41
+
42
+
43
+ def filter_tokens(matches: Iterator[Token], emoji_only: bool,
44
+ join_emoji: bool) -> Iterator[Token]: ...
45
+
46
+
47
+ def get_search_tree() -> _SearchTree: ...
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from emoji.unicode_codes.data_dict import *
2
+
3
+ __all__ = [
4
+ 'get_emoji_unicode_dict', 'get_aliases_unicode_dict',
5
+ 'EMOJI_DATA', 'STATUS', 'LANGUAGES'
6
+ ]
7
+
8
+
9
+ _EMOJI_UNICODE = {lang: None for lang in LANGUAGES} # Cache for the language dicts
10
+
11
+ _ALIASES_UNICODE = {} # Cache for the aliases dict
12
+
13
+
14
+ def get_emoji_unicode_dict(lang):
15
+ """Generate dict containing all fully-qualified and component emoji name for a language
16
+ The dict is only generated once per language and then cached in _EMOJI_UNICODE[lang]"""
17
+
18
+ if _EMOJI_UNICODE[lang] is None:
19
+ _EMOJI_UNICODE[lang] = {data[lang]: emj for emj, data in EMOJI_DATA.items()
20
+ if lang in data and data['status'] <= STATUS['fully_qualified']}
21
+
22
+ return _EMOJI_UNICODE[lang]
23
+
24
+
25
+ def get_aliases_unicode_dict():
26
+ """Generate dict containing all fully-qualified and component aliases
27
+ The dict is only generated once and then cached in _ALIASES_UNICODE"""
28
+
29
+ if not _ALIASES_UNICODE:
30
+ _ALIASES_UNICODE.update(get_emoji_unicode_dict('en'))
31
+ for emj, data in EMOJI_DATA.items():
32
+ if 'alias' in data and data['status'] <= STATUS['fully_qualified']:
33
+ for alias in data['alias']:
34
+ _ALIASES_UNICODE[alias] = emj
35
+
36
+ return _ALIASES_UNICODE
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/__init__.pyi ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from .data_dict import *
2
+
3
+ __all__ = ["get_emoji_unicode_dict", "get_aliases_unicode_dict", "EMOJI_DATA", "STATUS", "LANGUAGES"]
4
+
5
+ def get_emoji_unicode_dict(lang: str) -> dict[str, str]: ...
6
+ def get_aliases_unicode_dict() -> dict[str, str]: ...
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/data_dict.py ADDED
The diff for this file is too large to render. See raw diff
 
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/data_dict.pyi ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ __all__ = ["EMOJI_DATA", "STATUS", "LANGUAGES"]
4
+
5
+ STATUS: dict[str, int]
6
+ LANGUAGES: list[str]
7
+ EMOJI_DATA: dict[str, dict[str, Any]]
resources/app/plugins/deepmoji_plugin/DeepMoji/emoji/unicode_codes/py.typed ADDED
File without changes
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/.gitkeep ADDED
@@ -0,0 +1 @@
 
 
1
+
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # torchMoji examples
2
+
3
+ ## Initialization
4
+ [create_twitter_vocab.py](create_twitter_vocab.py)
5
+ Create a new vocabulary from a tsv file.
6
+
7
+ [tokenize_dataset.py](tokenize_dataset.py)
8
+ Tokenize a given dataset using the prebuilt vocabulary.
9
+
10
+ [vocab_extension.py](vocab_extension.py)
11
+ Extend the given vocabulary using dataset-specific words.
12
+
13
+ [dataset_split.py](dataset_split.py)
14
+ Split a given dataset into training, validation and testing.
15
+
16
+ ## Use pretrained model/architecture
17
+ [score_texts_emojis.py](score_texts_emojis.py)
18
+ Use torchMoji to score texts for emoji distribution.
19
+
20
+ [text_emojize.py](text_emojize.py)
21
+ Use torchMoji to output emoji visualization from a single text input (mapped from `emoji_overview.png`)
22
+
23
+ ```sh
24
+ python examples/text_emojize.py --text "I love mom's cooking\!"
25
+ # => I love mom's cooking! πŸ˜‹ 😍 πŸ’“ πŸ’› ❀
26
+ ```
27
+
28
+ [encode_texts.py](encode_texts.py)
29
+ Use torchMoji to encode the text into 2304-dimensional feature vectors for further modeling/analysis.
30
+
31
+ ## Transfer learning
32
+ [finetune_youtube_last.py](finetune_youtube_last.py)
33
+ Finetune the model on the SS-Youtube dataset using the 'last' method.
34
+
35
+ [finetune_insults_chain-thaw.py](finetune_insults_chain-thaw.py)
36
+ Finetune the model on the Kaggle insults dataset (from blog post) using the 'chain-thaw' method.
37
+
38
+ [finetune_semeval_class-avg_f1.py](finetune_semeval_class-avg_f1.py)
39
+ Finetune the model on the SemeEval emotion dataset using the 'full' method and evaluate using the class average F1 metric.
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/__init__.py ADDED
File without changes
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/create_twitter_vocab.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Creates a vocabulary from a tsv file.
2
+ """
3
+
4
+ import codecs
5
+ import example_helper
6
+ from torchmoji.create_vocab import VocabBuilder
7
+ from torchmoji.word_generator import TweetWordGenerator
8
+
9
+ with codecs.open('../../twitterdata/tweets.2016-09-01', 'rU', 'utf-8') as stream:
10
+ wg = TweetWordGenerator(stream)
11
+ vb = VocabBuilder(wg)
12
+ vb.count_all_words()
13
+ vb.save_vocab()
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/dataset_split.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Split a given dataset into three different datasets: training, validation and
3
+ testing.
4
+
5
+ This is achieved by splitting the given list of sentences into three separate
6
+ lists according to either a given ratio (e.g. [0.7, 0.1, 0.2]) or by an
7
+ explicit enumeration. The sentences are also tokenised using the given
8
+ vocabulary.
9
+
10
+ Also splits a given list of dictionaries containing information about
11
+ each sentence.
12
+
13
+ An additional parameter can be set 'extend_with', which will extend the given
14
+ vocabulary with up to 'extend_with' tokens, taken from the training dataset.
15
+ '''
16
+ from __future__ import print_function, unicode_literals
17
+ import example_helper
18
+ import json
19
+
20
+ from torchmoji.sentence_tokenizer import SentenceTokenizer
21
+
22
+ DATASET = [
23
+ 'I am sentence 0',
24
+ 'I am sentence 1',
25
+ 'I am sentence 2',
26
+ 'I am sentence 3',
27
+ 'I am sentence 4',
28
+ 'I am sentence 5',
29
+ 'I am sentence 6',
30
+ 'I am sentence 7',
31
+ 'I am sentence 8',
32
+ 'I am sentence 9 newword',
33
+ ]
34
+
35
+ INFO_DICTS = [
36
+ {'label': 'sentence 0'},
37
+ {'label': 'sentence 1'},
38
+ {'label': 'sentence 2'},
39
+ {'label': 'sentence 3'},
40
+ {'label': 'sentence 4'},
41
+ {'label': 'sentence 5'},
42
+ {'label': 'sentence 6'},
43
+ {'label': 'sentence 7'},
44
+ {'label': 'sentence 8'},
45
+ {'label': 'sentence 9'},
46
+ ]
47
+
48
+ with open('../model/vocabulary.json', 'r') as f:
49
+ vocab = json.load(f)
50
+ st = SentenceTokenizer(vocab, 30)
51
+
52
+ # Split using the default split ratio
53
+ print(st.split_train_val_test(DATASET, INFO_DICTS))
54
+
55
+ # Split explicitly
56
+ print(st.split_train_val_test(DATASET,
57
+ INFO_DICTS,
58
+ [[0, 1, 2, 4, 9], [5, 6], [7, 8, 3]],
59
+ extend_with=1))
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/encode_texts.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ """ Use torchMoji to encode texts into emotional feature vectors.
4
+ """
5
+ from __future__ import print_function, division, unicode_literals
6
+ import json
7
+
8
+ from torchmoji.sentence_tokenizer import SentenceTokenizer
9
+ from torchmoji.model_def import torchmoji_feature_encoding
10
+ from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
11
+
12
+ TEST_SENTENCES = ['I love mom\'s cooking',
13
+ 'I love how you never reply back..',
14
+ 'I love cruising with my homies',
15
+ 'I love messing with yo mind!!',
16
+ 'I love you and now you\'re just gone..',
17
+ 'This is shit',
18
+ 'This is the shit']
19
+
20
+ maxlen = 30
21
+ batch_size = 32
22
+
23
+ print('Tokenizing using dictionary from {}'.format(VOCAB_PATH))
24
+ with open(VOCAB_PATH, 'r') as f:
25
+ vocabulary = json.load(f)
26
+ st = SentenceTokenizer(vocabulary, maxlen)
27
+ tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
28
+
29
+ print('Loading model from {}.'.format(PRETRAINED_PATH))
30
+ model = torchmoji_feature_encoding(PRETRAINED_PATH)
31
+ print(model)
32
+
33
+ print('Encoding texts..')
34
+ encoding = model(tokenized)
35
+
36
+ print('First 5 dimensions for sentence: {}'.format(TEST_SENTENCES[0]))
37
+ print(encoding[0,:5])
38
+
39
+ # Now you could visualize the encodings to see differences,
40
+ # run a logistic regression classifier on top,
41
+ # or basically anything you'd like to do.
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/example_helper.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ """ Module import helper.
2
+ Modifies PATH in order to allow us to import the torchmoji directory.
3
+ """
4
+ import sys
5
+ from os.path import abspath, dirname
6
+ sys.path.insert(0, dirname(dirname(abspath(__file__))))
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/finetune_insults_chain-thaw.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Finetuning example.
2
+
3
+ Trains the torchMoji model on the kaggle insults dataset, using the 'chain-thaw'
4
+ finetuning method and the accuracy metric. See the blog post at
5
+ https://medium.com/@bjarkefelbo/what-can-we-learn-from-emojis-6beb165a5ea0
6
+ for more information. Note that results may differ a bit due to slight
7
+ changes in preprocessing and train/val/test split.
8
+
9
+ The 'chain-thaw' method does the following:
10
+ 0) Load all weights except for the softmax layer. Extend the embedding layer if
11
+ necessary, initialising the new weights with random values.
12
+ 1) Freeze every layer except the last (softmax) layer and train it.
13
+ 2) Freeze every layer except the first layer and train it.
14
+ 3) Freeze every layer except the second etc., until the second last layer.
15
+ 4) Unfreeze all layers and train entire model.
16
+ """
17
+
18
+ from __future__ import print_function
19
+ import example_helper
20
+ import json
21
+ from torchmoji.model_def import torchmoji_transfer
22
+ from torchmoji.global_variables import PRETRAINED_PATH
23
+ from torchmoji.finetuning import (
24
+ load_benchmark,
25
+ finetune)
26
+
27
+
28
+ DATASET_PATH = '../data/kaggle-insults/raw.pickle'
29
+ nb_classes = 2
30
+
31
+ with open('../model/vocabulary.json', 'r') as f:
32
+ vocab = json.load(f)
33
+
34
+ # Load dataset. Extend the existing vocabulary with up to 10000 tokens from
35
+ # the training dataset.
36
+ data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
37
+
38
+ # Set up model and finetune. Note that we have to extend the embedding layer
39
+ # with the number of tokens added to the vocabulary.
40
+ model = torchmoji_transfer(nb_classes, PRETRAINED_PATH, extend_embedding=data['added'])
41
+ print(model)
42
+ model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
43
+ data['batch_size'], method='chain-thaw')
44
+ print('Acc: {}'.format(acc))
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/finetune_semeval_class-avg_f1.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Finetuning example.
2
+
3
+ Trains the torchMoji model on the SemEval emotion dataset, using the 'last'
4
+ finetuning method and the class average F1 metric.
5
+
6
+ The 'last' method does the following:
7
+ 0) Load all weights except for the softmax layer. Do not add tokens to the
8
+ vocabulary and do not extend the embedding layer.
9
+ 1) Freeze all layers except for the softmax layer.
10
+ 2) Train.
11
+
12
+ The class average F1 metric does the following:
13
+ 1) For each class, relabel the dataset into binary classification
14
+ (belongs to/does not belong to this class).
15
+ 2) Calculate F1 score for each class.
16
+ 3) Compute the average of all F1 scores.
17
+ """
18
+
19
+ from __future__ import print_function
20
+ import example_helper
21
+ import json
22
+ from torchmoji.finetuning import load_benchmark
23
+ from torchmoji.class_avg_finetuning import class_avg_finetune
24
+ from torchmoji.model_def import torchmoji_transfer
25
+ from torchmoji.global_variables import PRETRAINED_PATH
26
+
27
+ DATASET_PATH = '../data/SE0714/raw.pickle'
28
+ nb_classes = 3
29
+
30
+ with open('../model/vocabulary.json', 'r') as f:
31
+ vocab = json.load(f)
32
+
33
+
34
+ # Load dataset. Extend the existing vocabulary with up to 10000 tokens from
35
+ # the training dataset.
36
+ data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
37
+
38
+ # Set up model and finetune. Note that we have to extend the embedding layer
39
+ # with the number of tokens added to the vocabulary.
40
+ #
41
+ # Also note that when using class average F1 to evaluate, the model has to be
42
+ # defined with two classes, since the model will be trained for each class
43
+ # separately.
44
+ model = torchmoji_transfer(2, PRETRAINED_PATH, extend_embedding=data['added'])
45
+ print(model)
46
+
47
+ # For finetuning however, pass in the actual number of classes.
48
+ model, f1 = class_avg_finetune(model, data['texts'], data['labels'],
49
+ nb_classes, data['batch_size'], method='last')
50
+ print('F1: {}'.format(f1))
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/finetune_youtube_last.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Finetuning example.
2
+
3
+ Trains the torchMoji model on the SS-Youtube dataset, using the 'last'
4
+ finetuning method and the accuracy metric.
5
+
6
+ The 'last' method does the following:
7
+ 0) Load all weights except for the softmax layer. Do not add tokens to the
8
+ vocabulary and do not extend the embedding layer.
9
+ 1) Freeze all layers except for the softmax layer.
10
+ 2) Train.
11
+ """
12
+
13
+ from __future__ import print_function
14
+ import example_helper
15
+ import json
16
+ from torchmoji.model_def import torchmoji_transfer
17
+ from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH, ROOT_PATH
18
+ from torchmoji.finetuning import (
19
+ load_benchmark,
20
+ finetune)
21
+
22
+ DATASET_PATH = '{}/data/SS-Youtube/raw.pickle'.format(ROOT_PATH)
23
+ nb_classes = 2
24
+
25
+ with open(VOCAB_PATH, 'r') as f:
26
+ vocab = json.load(f)
27
+
28
+ # Load dataset.
29
+ data = load_benchmark(DATASET_PATH, vocab)
30
+
31
+ # Set up model and finetune
32
+ model = torchmoji_transfer(nb_classes, PRETRAINED_PATH)
33
+ print(model)
34
+ model, acc = finetune(model, data['texts'], data['labels'], nb_classes, data['batch_size'], method='last')
35
+ print('Acc: {}'.format(acc))
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/score_texts_emojis.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ """ Use torchMoji to score texts for emoji distribution.
4
+
5
+ The resulting emoji ids (0-63) correspond to the mapping
6
+ in emoji_overview.png file at the root of the torchMoji repo.
7
+
8
+ Writes the result to a csv file.
9
+ """
10
+
11
+ from __future__ import print_function, division, unicode_literals
12
+
13
+ import sys
14
+ from os.path import abspath, dirname
15
+
16
+ import json
17
+ import csv
18
+ import numpy as np
19
+
20
+ from torchmoji.sentence_tokenizer import SentenceTokenizer
21
+ from torchmoji.model_def import torchmoji_emojis
22
+ from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
23
+
24
+ sys.path.insert(0, dirname(dirname(abspath(__file__))))
25
+
26
+ OUTPUT_PATH = 'test_sentences.csv'
27
+
28
+ TEST_SENTENCES = ['I love mom\'s cooking',
29
+ 'I love how you never reply back..',
30
+ 'I love cruising with my homies',
31
+ 'I love messing with yo mind!!',
32
+ 'I love you and now you\'re just gone..',
33
+ 'This is shit',
34
+ 'This is the shit']
35
+
36
+
37
+ def top_elements(array, k):
38
+ ind = np.argpartition(array, -k)[-k:]
39
+ return ind[np.argsort(array[ind])][::-1]
40
+
41
+ maxlen = 30
42
+
43
+ print('Tokenizing using dictionary from {}'.format(VOCAB_PATH))
44
+ with open(VOCAB_PATH, 'r') as f:
45
+ vocabulary = json.load(f)
46
+
47
+ st = SentenceTokenizer(vocabulary, maxlen)
48
+
49
+ print('Loading model from {}.'.format(PRETRAINED_PATH))
50
+ model = torchmoji_emojis(PRETRAINED_PATH)
51
+ print(model)
52
+
53
+ def doImportableFunction():
54
+ print('Running predictions.')
55
+ tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
56
+ prob = model(tokenized)
57
+
58
+ for prob in [prob]:
59
+ # Find top emojis for each sentence. Emoji ids (0-63)
60
+ # correspond to the mapping in emoji_overview.png
61
+ # at the root of the torchMoji repo.
62
+ print('Writing results to {}'.format(OUTPUT_PATH))
63
+ scores = []
64
+ for i, t in enumerate(TEST_SENTENCES):
65
+ t_tokens = tokenized[i]
66
+ t_score = [t]
67
+ t_prob = prob[i]
68
+ ind_top = top_elements(t_prob, 5)
69
+ t_score.append(sum(t_prob[ind_top]))
70
+ t_score.extend(ind_top)
71
+ t_score.extend([t_prob[ind] for ind in ind_top])
72
+ scores.append(t_score)
73
+ print(t_score)
74
+
75
+ with open(OUTPUT_PATH, 'w') as csvfile:
76
+ writer = csv.writer(csvfile, delimiter=str(','), lineterminator='\n')
77
+ writer.writerow(['Text', 'Top5%',
78
+ 'Emoji_1', 'Emoji_2', 'Emoji_3', 'Emoji_4', 'Emoji_5',
79
+ 'Pct_1', 'Pct_2', 'Pct_3', 'Pct_4', 'Pct_5'])
80
+ for i, row in enumerate(scores):
81
+ try:
82
+ writer.writerow(row)
83
+ except:
84
+ print("Exception at row {}!".format(i))
85
+ return
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/text_emojize.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ """ Use torchMoji to predict emojis from a single text input
4
+ """
5
+
6
+ from __future__ import print_function, division, unicode_literals
7
+ import example_helper
8
+ import json
9
+ import csv
10
+ import argparse
11
+
12
+ import numpy as np
13
+ import emoji
14
+
15
+ from torchmoji.sentence_tokenizer import SentenceTokenizer
16
+ from torchmoji.model_def import torchmoji_emojis
17
+ from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
18
+
19
+ # Emoji map in emoji_overview.png
20
+ EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \
21
+ :pensive: :ok_hand: :blush: :heart: :smirk: \
22
+ :grin: :notes: :flushed: :100: :sleeping: \
23
+ :relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \
24
+ :sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \
25
+ :neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \
26
+ :v: :sunglasses: :rage: :thumbsup: :cry: \
27
+ :sleepy: :yum: :triumph: :hand: :mask: \
28
+ :clap: :eyes: :gun: :persevere: :smiling_imp: \
29
+ :sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \
30
+ :wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \
31
+ :angry: :no_good: :muscle: :facepunch: :purple_heart: \
32
+ :sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ')
33
+
34
+ def top_elements(array, k):
35
+ ind = np.argpartition(array, -k)[-k:]
36
+ return ind[np.argsort(array[ind])][::-1]
37
+
38
+ if __name__ == "__main__":
39
+ argparser = argparse.ArgumentParser()
40
+ argparser.add_argument('--text', type=str, required=True, help="Input text to emojize")
41
+ argparser.add_argument('--maxlen', type=int, default=30, help="Max length of input text")
42
+ args = argparser.parse_args()
43
+
44
+ # Tokenizing using dictionary
45
+ with open(VOCAB_PATH, 'r') as f:
46
+ vocabulary = json.load(f)
47
+
48
+ st = SentenceTokenizer(vocabulary, args.maxlen)
49
+
50
+ # Loading model
51
+ model = torchmoji_emojis(PRETRAINED_PATH)
52
+ # Running predictions
53
+ tokenized, _, _ = st.tokenize_sentences([args.text])
54
+ # Get sentence probability
55
+ prob = model(tokenized)[0]
56
+
57
+ # Top emoji id
58
+ emoji_ids = top_elements(prob, 5)
59
+
60
+ # map to emojis
61
+ emojis = map(lambda x: EMOJIS[x], emoji_ids)
62
+
63
+ print(emoji.emojize("{} {}".format(args.text,' '.join(emojis)), use_aliases=True))
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/tokenize_dataset.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Take a given list of sentences and turn it into a numpy array, where each
3
+ number corresponds to a word. Padding is used (number 0) to ensure fixed length
4
+ of sentences.
5
+ """
6
+
7
+ from __future__ import print_function, unicode_literals
8
+ import example_helper
9
+ import json
10
+ from torchmoji.sentence_tokenizer import SentenceTokenizer
11
+
12
+ with open('../model/vocabulary.json', 'r') as f:
13
+ vocabulary = json.load(f)
14
+
15
+ st = SentenceTokenizer(vocabulary, 30)
16
+ test_sentences = [
17
+ '\u2014 -- \u203c !!\U0001F602',
18
+ 'Hello world!',
19
+ 'This is a sample tweet #example',
20
+ ]
21
+
22
+ tokens, infos, stats = st.tokenize_sentences(test_sentences)
23
+
24
+ print(tokens)
25
+ print(infos)
26
+ print(stats)
resources/app/plugins/deepmoji_plugin/DeepMoji/examples/vocab_extension.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Extend the given vocabulary using dataset-specific words.
3
+
4
+ 1. First create a vocabulary for the specific dataset.
5
+ 2. Find all words not in our vocabulary, but in the dataset vocabulary.
6
+ 3. Take top X (default=1000) of these words and add them to the vocabulary.
7
+ 4. Save this combined vocabulary and embedding matrix, which can now be used.
8
+ """
9
+
10
+ from __future__ import print_function, unicode_literals
11
+ import example_helper
12
+ import json
13
+ from torchmoji.create_vocab import extend_vocab, VocabBuilder
14
+ from torchmoji.word_generator import WordGenerator
15
+
16
+ new_words = ['#zzzzaaazzz', 'newword', 'newword']
17
+ word_gen = WordGenerator(new_words)
18
+ vb = VocabBuilder(word_gen)
19
+ vb.count_all_words()
20
+
21
+ with open('../model/vocabulary.json') as f:
22
+ vocab = json.load(f)
23
+
24
+ print(len(vocab))
25
+ print(vb.word_counts)
26
+ extend_vocab(vocab, vb, max_tokens=1)
27
+
28
+ # 'newword' should be added because it's more frequent in the given vocab
29
+ print(vocab['newword'])
30
+ print(len(vocab))
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/analyze_all_results.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+
3
+ # allow us to import the codebase directory
4
+ import sys
5
+ import glob
6
+ import numpy as np
7
+ from os.path import dirname, abspath
8
+ sys.path.insert(0, dirname(dirname(abspath(__file__))))
9
+
10
+ DATASETS = ['SE0714', 'Olympic', 'PsychExp', 'SS-Twitter', 'SS-Youtube',
11
+ 'SCv1', 'SV2-GEN'] # 'SE1604' excluded due to Twitter's ToS
12
+
13
+ def get_results(dset):
14
+ METHOD = 'last'
15
+ RESULTS_DIR = 'results/'
16
+ RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, dset, METHOD))
17
+ assert len(RESULT_PATHS)
18
+
19
+ scores = []
20
+ for path in RESULT_PATHS:
21
+ with open(path) as f:
22
+ score = f.readline().split(':')[1]
23
+ scores.append(float(score))
24
+
25
+ average = np.mean(scores)
26
+ maximum = max(scores)
27
+ minimum = min(scores)
28
+ std = np.std(scores)
29
+
30
+ print('Dataset: {}'.format(dset))
31
+ print('Method: {}'.format(METHOD))
32
+ print('Number of results: {}'.format(len(scores)))
33
+ print('--------------------------')
34
+ print('Average: {}'.format(average))
35
+ print('Maximum: {}'.format(maximum))
36
+ print('Minimum: {}'.format(minimum))
37
+ print('Standard deviaton: {}'.format(std))
38
+
39
+ for dset in DATASETS:
40
+ get_results(dset)
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/analyze_results.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+
3
+ import sys
4
+ import glob
5
+ import numpy as np
6
+
7
+ DATASET = 'SS-Twitter' # 'SE1604' excluded due to Twitter's ToS
8
+ METHOD = 'new'
9
+
10
+ # Optional usage: analyze_results.py <dataset> <method>
11
+ if len(sys.argv) == 3:
12
+ DATASET = sys.argv[1]
13
+ METHOD = sys.argv[2]
14
+
15
+ RESULTS_DIR = 'results/'
16
+ RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, DATASET, METHOD))
17
+
18
+ if not RESULT_PATHS:
19
+ print('Could not find results for \'{}\' using \'{}\' in directory \'{}\'.'.format(DATASET, METHOD, RESULTS_DIR))
20
+ else:
21
+ scores = []
22
+ for path in RESULT_PATHS:
23
+ with open(path) as f:
24
+ score = f.readline().split(':')[1]
25
+ scores.append(float(score))
26
+
27
+ average = np.mean(scores)
28
+ maximum = max(scores)
29
+ minimum = min(scores)
30
+ std = np.std(scores)
31
+
32
+ print('Dataset: {}'.format(DATASET))
33
+ print('Method: {}'.format(METHOD))
34
+ print('Number of results: {}'.format(len(scores)))
35
+ print('--------------------------')
36
+ print('Average: {}'.format(average))
37
+ print('Maximum: {}'.format(maximum))
38
+ print('Minimum: {}'.format(minimum))
39
+ print('Standard deviaton: {}'.format(std))
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/calculate_coverages.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import pickle
3
+ import json
4
+ import csv
5
+ import sys
6
+ from io import open
7
+
8
+ # Allow us to import the torchmoji directory
9
+ from os.path import dirname, abspath
10
+ sys.path.insert(0, dirname(dirname(abspath(__file__))))
11
+
12
+ from torchmoji.sentence_tokenizer import SentenceTokenizer, coverage
13
+
14
+ try:
15
+ unicode # Python 2
16
+ except NameError:
17
+ unicode = str # Python 3
18
+
19
+ IS_PYTHON2 = int(sys.version[0]) == 2
20
+
21
+ OUTPUT_PATH = 'coverage.csv'
22
+ DATASET_PATHS = [
23
+ '../data/Olympic/raw.pickle',
24
+ '../data/PsychExp/raw.pickle',
25
+ '../data/SCv1/raw.pickle',
26
+ '../data/SCv2-GEN/raw.pickle',
27
+ '../data/SE0714/raw.pickle',
28
+ #'../data/SE1604/raw.pickle', # Excluded due to Twitter's ToS
29
+ '../data/SS-Twitter/raw.pickle',
30
+ '../data/SS-Youtube/raw.pickle',
31
+ ]
32
+
33
+ with open('../model/vocabulary.json', 'r') as f:
34
+ vocab = json.load(f)
35
+
36
+ results = []
37
+ for p in DATASET_PATHS:
38
+ coverage_result = [p]
39
+ print('Calculating coverage for {}'.format(p))
40
+ with open(p, 'rb') as f:
41
+ if IS_PYTHON2:
42
+ s = pickle.load(f)
43
+ else:
44
+ s = pickle.load(f, fix_imports=True)
45
+
46
+ # Decode data
47
+ try:
48
+ s['texts'] = [unicode(x) for x in s['texts']]
49
+ except UnicodeDecodeError:
50
+ s['texts'] = [x.decode('utf-8') for x in s['texts']]
51
+
52
+ # Own
53
+ st = SentenceTokenizer({}, 30)
54
+ tests, dicts, _ = st.split_train_val_test(s['texts'], s['info'],
55
+ [s['train_ind'],
56
+ s['val_ind'],
57
+ s['test_ind']],
58
+ extend_with=10000)
59
+ coverage_result.append(coverage(tests[2]))
60
+
61
+ # Last
62
+ st = SentenceTokenizer(vocab, 30)
63
+ tests, dicts, _ = st.split_train_val_test(s['texts'], s['info'],
64
+ [s['train_ind'],
65
+ s['val_ind'],
66
+ s['test_ind']],
67
+ extend_with=0)
68
+ coverage_result.append(coverage(tests[2]))
69
+
70
+ # Full
71
+ st = SentenceTokenizer(vocab, 30)
72
+ tests, dicts, _ = st.split_train_val_test(s['texts'], s['info'],
73
+ [s['train_ind'],
74
+ s['val_ind'],
75
+ s['test_ind']],
76
+ extend_with=10000)
77
+ coverage_result.append(coverage(tests[2]))
78
+
79
+ results.append(coverage_result)
80
+
81
+ with open(OUTPUT_PATH, 'wb') as csvfile:
82
+ writer = csv.writer(csvfile, delimiter='\t', lineterminator='\n')
83
+ writer.writerow(['Dataset', 'Own', 'Last', 'Full'])
84
+ for i, row in enumerate(results):
85
+ try:
86
+ writer.writerow(row)
87
+ except:
88
+ print("Exception at row {}!".format(i))
89
+
90
+ print('Saved to {}'.format(OUTPUT_PATH))
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/convert_all_datasets.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+
3
+ import json
4
+ import math
5
+ import pickle
6
+ import sys
7
+ from io import open
8
+ import numpy as np
9
+ from os.path import abspath, dirname
10
+ sys.path.insert(0, dirname(dirname(abspath(__file__))))
11
+
12
+ from torchmoji.word_generator import WordGenerator
13
+ from torchmoji.create_vocab import VocabBuilder
14
+ from torchmoji.sentence_tokenizer import SentenceTokenizer, extend_vocab, coverage
15
+ from torchmoji.tokenizer import tokenize
16
+
17
+ try:
18
+ unicode # Python 2
19
+ except NameError:
20
+ unicode = str # Python 3
21
+
22
+ IS_PYTHON2 = int(sys.version[0]) == 2
23
+
24
+ DATASETS = [
25
+ 'Olympic',
26
+ 'PsychExp',
27
+ 'SCv1',
28
+ 'SCv2-GEN',
29
+ 'SE0714',
30
+ #'SE1604', # Excluded due to Twitter's ToS
31
+ 'SS-Twitter',
32
+ 'SS-Youtube',
33
+ ]
34
+
35
+ DIR = '../data'
36
+ FILENAME_RAW = 'raw.pickle'
37
+ FILENAME_OWN = 'own_vocab.pickle'
38
+ FILENAME_OUR = 'twitter_vocab.pickle'
39
+ FILENAME_COMBINED = 'combined_vocab.pickle'
40
+
41
+
42
+ def roundup(x):
43
+ return int(math.ceil(x / 10.0)) * 10
44
+
45
+
46
+ def format_pickle(dset, train_texts, val_texts, test_texts, train_labels, val_labels, test_labels):
47
+ return {'dataset': dset,
48
+ 'train_texts': train_texts,
49
+ 'val_texts': val_texts,
50
+ 'test_texts': test_texts,
51
+ 'train_labels': train_labels,
52
+ 'val_labels': val_labels,
53
+ 'test_labels': test_labels}
54
+
55
+ def convert_dataset(filepath, extend_with, vocab):
56
+ print('-- Generating {} '.format(filepath))
57
+ sys.stdout.flush()
58
+ st = SentenceTokenizer(vocab, maxlen)
59
+ tokenized, dicts, _ = st.split_train_val_test(texts,
60
+ labels,
61
+ [data['train_ind'],
62
+ data['val_ind'],
63
+ data['test_ind']],
64
+ extend_with=extend_with)
65
+ pick = format_pickle(dset, tokenized[0], tokenized[1], tokenized[2],
66
+ dicts[0], dicts[1], dicts[2])
67
+ with open(filepath, 'w') as f:
68
+ pickle.dump(pick, f)
69
+ cover = coverage(tokenized[2])
70
+
71
+ print(' done. Coverage: {}'.format(cover))
72
+
73
+ with open('../model/vocabulary.json', 'r') as f:
74
+ vocab = json.load(f)
75
+
76
+ for dset in DATASETS:
77
+ print('Converting {}'.format(dset))
78
+
79
+ PATH_RAW = '{}/{}/{}'.format(DIR, dset, FILENAME_RAW)
80
+ PATH_OWN = '{}/{}/{}'.format(DIR, dset, FILENAME_OWN)
81
+ PATH_OUR = '{}/{}/{}'.format(DIR, dset, FILENAME_OUR)
82
+ PATH_COMBINED = '{}/{}/{}'.format(DIR, dset, FILENAME_COMBINED)
83
+
84
+ with open(PATH_RAW, 'rb') as dataset:
85
+ if IS_PYTHON2:
86
+ data = pickle.load(dataset)
87
+ else:
88
+ data = pickle.load(dataset, fix_imports=True)
89
+
90
+ # Decode data
91
+ try:
92
+ texts = [unicode(x) for x in data['texts']]
93
+ except UnicodeDecodeError:
94
+ texts = [x.decode('utf-8') for x in data['texts']]
95
+
96
+ wg = WordGenerator(texts)
97
+ vb = VocabBuilder(wg)
98
+ vb.count_all_words()
99
+
100
+ # Calculate max length of sequences considered
101
+ # Adjust batch_size accordingly to prevent GPU overflow
102
+ lengths = [len(tokenize(t)) for t in texts]
103
+ maxlen = roundup(np.percentile(lengths, 80.0))
104
+
105
+ # Extract labels
106
+ labels = [x['label'] for x in data['info']]
107
+
108
+ convert_dataset(PATH_OWN, 50000, {})
109
+ convert_dataset(PATH_OUR, 0, vocab)
110
+ convert_dataset(PATH_COMBINED, 10000, vocab)
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/download_weights.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ from subprocess import call
4
+ from builtins import input
5
+
6
+ curr_folder = os.path.basename(os.path.normpath(os.getcwd()))
7
+
8
+ weights_filename = 'pytorch_model.bin'
9
+ weights_folder = 'model'
10
+ weights_path = '{}/{}'.format(weights_folder, weights_filename)
11
+ if curr_folder == 'scripts':
12
+ weights_path = '../' + weights_path
13
+ weights_download_link = 'https://www.dropbox.com/s/q8lax9ary32c7t9/pytorch_model.bin?dl=0#'
14
+
15
+
16
+ MB_FACTOR = float(1<<20)
17
+
18
+ def prompt():
19
+ while True:
20
+ valid = {
21
+ 'y': True,
22
+ 'ye': True,
23
+ 'yes': True,
24
+ 'n': False,
25
+ 'no': False,
26
+ }
27
+ choice = input().lower()
28
+ if choice in valid:
29
+ return valid[choice]
30
+ else:
31
+ print('Please respond with \'y\' or \'n\' (or \'yes\' or \'no\')')
32
+
33
+ download = True
34
+ if os.path.exists(weights_path):
35
+ print('Weight file already exists at {}. Would you like to redownload it anyway? [y/n]'.format(weights_path))
36
+ download = prompt()
37
+ already_exists = True
38
+ else:
39
+ already_exists = False
40
+
41
+ if download:
42
+ print('About to download the pretrained weights file from {}'.format(weights_download_link))
43
+ if already_exists == False:
44
+ print('The size of the file is roughly 85MB. Continue? [y/n]')
45
+ else:
46
+ os.unlink(weights_path)
47
+
48
+ if already_exists or prompt():
49
+ print('Downloading...')
50
+
51
+ #urllib.urlretrieve(weights_download_link, weights_path)
52
+ #with open(weights_path,'wb') as f:
53
+ # f.write(requests.get(weights_download_link).content)
54
+
55
+ # downloading using wget due to issues with urlretrieve and requests
56
+ sys_call = 'wget {} -O {}'.format(weights_download_link, os.path.abspath(weights_path))
57
+ print("Running system call: {}".format(sys_call))
58
+ call(sys_call, shell=True)
59
+
60
+ if os.path.getsize(weights_path) / MB_FACTOR < 80:
61
+ raise ValueError("Download finished, but the resulting file is too small! " +
62
+ "It\'s only {} bytes.".format(os.path.getsize(weights_path)))
63
+ print('Downloaded weights to {}'.format(weights_path))
64
+ else:
65
+ print('Exiting.')
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/finetune_dataset.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Finetuning example.
2
+ """
3
+ from __future__ import print_function
4
+ import sys
5
+ import numpy as np
6
+ from os.path import abspath, dirname
7
+ sys.path.insert(0, dirname(dirname(abspath(__file__))))
8
+
9
+ import json
10
+ import math
11
+ from torchmoji.model_def import torchmoji_transfer
12
+ from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
13
+ from torchmoji.finetuning import (
14
+ load_benchmark,
15
+ finetune)
16
+ from torchmoji.class_avg_finetuning import class_avg_finetune
17
+
18
+ def roundup(x):
19
+ return int(math.ceil(x / 10.0)) * 10
20
+
21
+
22
+ # Format: (dataset_name,
23
+ # path_to_dataset,
24
+ # nb_classes,
25
+ # use_f1_score)
26
+ DATASETS = [
27
+ #('SE0714', '../data/SE0714/raw.pickle', 3, True),
28
+ #('Olympic', '../data/Olympic/raw.pickle', 4, True),
29
+ #('PsychExp', '../data/PsychExp/raw.pickle', 7, True),
30
+ #('SS-Twitter', '../data/SS-Twitter/raw.pickle', 2, False),
31
+ ('SS-Youtube', '../data/SS-Youtube/raw.pickle', 2, False),
32
+ #('SE1604', '../data/SE1604/raw.pickle', 3, False), # Excluded due to Twitter's ToS
33
+ #('SCv1', '../data/SCv1/raw.pickle', 2, True),
34
+ #('SCv2-GEN', '../data/SCv2-GEN/raw.pickle', 2, True)
35
+ ]
36
+
37
+ RESULTS_DIR = 'results'
38
+
39
+ # 'new' | 'last' | 'full' | 'chain-thaw'
40
+ FINETUNE_METHOD = 'last'
41
+ VERBOSE = 1
42
+
43
+ nb_tokens = 50000
44
+ nb_epochs = 1000
45
+ epoch_size = 1000
46
+
47
+ with open(VOCAB_PATH, 'r') as f:
48
+ vocab = json.load(f)
49
+
50
+ for rerun_iter in range(5):
51
+ for p in DATASETS:
52
+
53
+ # debugging
54
+ assert len(vocab) == nb_tokens
55
+
56
+ dset = p[0]
57
+ path = p[1]
58
+ nb_classes = p[2]
59
+ use_f1_score = p[3]
60
+
61
+ if FINETUNE_METHOD == 'last':
62
+ extend_with = 0
63
+ elif FINETUNE_METHOD in ['new', 'full', 'chain-thaw']:
64
+ extend_with = 10000
65
+ else:
66
+ raise ValueError('Finetuning method not recognised!')
67
+
68
+ # Load dataset.
69
+ data = load_benchmark(path, vocab, extend_with=extend_with)
70
+
71
+ (X_train, y_train) = (data['texts'][0], data['labels'][0])
72
+ (X_val, y_val) = (data['texts'][1], data['labels'][1])
73
+ (X_test, y_test) = (data['texts'][2], data['labels'][2])
74
+
75
+ weight_path = PRETRAINED_PATH if FINETUNE_METHOD != 'new' else None
76
+ nb_model_classes = 2 if use_f1_score else nb_classes
77
+ model = torchmoji_transfer(
78
+ nb_model_classes,
79
+ weight_path,
80
+ extend_embedding=data['added'])
81
+ print(model)
82
+
83
+ # Training
84
+ print('Training: {}'.format(path))
85
+ if use_f1_score:
86
+ model, result = class_avg_finetune(model, data['texts'],
87
+ data['labels'],
88
+ nb_classes, data['batch_size'],
89
+ FINETUNE_METHOD,
90
+ verbose=VERBOSE)
91
+ else:
92
+ model, result = finetune(model, data['texts'], data['labels'],
93
+ nb_classes, data['batch_size'],
94
+ FINETUNE_METHOD, metric='acc',
95
+ verbose=VERBOSE)
96
+
97
+ # Write results
98
+ if use_f1_score:
99
+ print('Overall F1 score (dset = {}): {}'.format(dset, result))
100
+ with open('{}/{}_{}_{}_results.txt'.
101
+ format(RESULTS_DIR, dset, FINETUNE_METHOD, rerun_iter),
102
+ "w") as f:
103
+ f.write("F1: {}\n".format(result))
104
+ else:
105
+ print('Test accuracy (dset = {}): {}'.format(dset, result))
106
+ with open('{}/{}_{}_{}_results.txt'.
107
+ format(RESULTS_DIR, dset, FINETUNE_METHOD, rerun_iter),
108
+ "w") as f:
109
+ f.write("Acc: {}\n".format(result))
resources/app/plugins/deepmoji_plugin/DeepMoji/scripts/results/.gitkeep ADDED
@@ -0,0 +1 @@
 
 
1
+
resources/app/plugins/deepmoji_plugin/DeepMoji/setup.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup
2
+
3
+ setup(
4
+ name='torchmoji',
5
+ version='1.0',
6
+ packages=['torchmoji'],
7
+ description='torchMoji',
8
+ include_package_data=True,
9
+ install_requires=[
10
+ 'emoji==0.4.5',
11
+ 'numpy==1.13.1',
12
+ 'scipy==0.19.1',
13
+ 'scikit-learn==0.19.0',
14
+ 'text-unidecode==1.0',
15
+ ],
16
+ )