Spaces:
Build error
Build error
File size: 8,049 Bytes
9941f21 a4fd448 9887bdf 9941f21 a4fd448 9941f21 54e0381 c11ea8c 9887bdf c11ea8c 3cf6a6c ab66a38 a4fd448 3cf6a6c 54e0381 a4fd448 54e0381 320db74 54e0381 a4fd448 54e0381 a4fd448 54e0381 a4fd448 54e0381 a4fd448 54e0381 3cf6a6c a4fd448 3cf6a6c ab66a38 3cf6a6c 9887bdf a4fd448 bf108da 57885e4 a4fd448 82f7ab5 e3803af bf108da a4fd448 e3803af 9887bdf e3803af 1f54c5f bf108da e3803af e7252da bf108da 9887bdf 6d4fd39 a4fd448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import sys
import torch
import pickle
import cv2
import gradio as gr
import numpy as np
from PIL import Image
from collections import defaultdict
from glob import glob
from matplotlib import pyplot as plt
from matplotlib import animation
from easydict import EasyDict as edict
from huggingface_hub import hf_hub_download
sys.path.append("./rome/")
sys.path.append('./DECA')
from rome.infer import Infer
from rome.src.utils.processing import process_black_shape, tensor2image
from rome.src.utils.visuals import mask_errosion
# loading models ---- create model repo
default_modnet_path = hf_hub_download('Pie31415/rome', 'modnet_photographic_portrait_matting.ckpt')
default_model_path = hf_hub_download('Pie31415/rome', 'rome.pth')
# parser configurations
args = edict({
"save_dir": ".",
"save_render": True,
"model_checkpoint": default_model_path,
"modnet_path": default_modnet_path,
"random_seed": 0,
"debug": False,
"verbose": False,
"model_image_size": 256,
"align_source": True,
"align_target": False,
"align_scale": 1.25,
"use_mesh_deformations": False,
"subdivide_mesh": False,
"renderer_sigma": 1e-08,
"renderer_zfar": 100.0,
"renderer_type": "soft_mesh",
"renderer_texture_type": "texture_uv",
"renderer_normalized_alphas": False,
"deca_path": "DECA",
"rome_data_dir": "rome/data",
"autoenc_cat_alphas": False,
"autoenc_align_inputs": False,
"autoenc_use_warp": False,
"autoenc_num_channels": 64,
"autoenc_max_channels": 512,
"autoenc_num_groups": 4,
"autoenc_num_bottleneck_groups": 0,
"autoenc_num_blocks": 2,
"autoenc_num_layers": 4,
"autoenc_block_type": "bottleneck",
"neural_texture_channels": 8,
"num_harmonic_encoding_funcs": 6,
"unet_num_channels": 64,
"unet_max_channels": 512,
"unet_num_groups": 4,
"unet_num_blocks": 1,
"unet_num_layers": 2,
"unet_block_type": "conv",
"unet_skip_connection_type": "cat",
"unet_use_normals_cond": True,
"unet_use_vertex_cond": False,
"unet_use_uvs_cond": False,
"unet_pred_mask": False,
"use_separate_seg_unet": True,
"norm_layer_type": "gn",
"activation_type": "relu",
"conv_layer_type": "ws_conv",
"deform_norm_layer_type": "gn",
"deform_activation_type": "relu",
"deform_conv_layer_type": "ws_conv",
"unet_seg_weight": 0.0,
"unet_seg_type": "bce_with_logits",
"deform_face_tightness": 0.0001,
"use_whole_segmentation": False,
"mask_hair_for_neck": False,
"use_hair_from_avatar": False,
"use_scalp_deforms": True,
"use_neck_deforms": True,
"use_basis_deformer": False,
"use_unet_deformer": True,
"pretrained_encoder_basis_path": "",
"pretrained_vertex_basis_path": "",
"num_basis": 50,
"basis_init": "pca",
"num_vertex": 5023,
"train_basis": True,
"path_to_deca": "DECA",
"path_to_linear_hair_model": "data/linear_hair.pth", # N/A
"path_to_mobile_model": "data/disp_model.pth", # N/A
"n_scalp": 60,
"use_distill": False,
"use_mobile_version": False,
"deformer_path": "data/rome.pth",
"output_unet_deformer_feats": 32,
"use_deca_details": False,
"use_flametex": False,
"upsample_type": "nearest",
"num_frequencies": 6,
"deform_face_scale_coef": 0.0,
"device": "cuda"
})
# download FLAME and DECA pretrained
generic_model_path = hf_hub_download('Pie31415/rome', 'generic_model.pkl')
deca_model_path = hf_hub_download('Pie31415/rome', 'deca_model.tar')
with open(generic_model_path, 'rb') as f:
ss = pickle.load(f, encoding='latin1')
with open('./DECA/data/generic_model.pkl', 'wb') as out:
pickle.dump(ss, out)
with open(deca_model_path, "rb") as input:
with open('./DECA/data/deca_model.tar', "wb") as out:
for line in input:
out.write(line)
# load ROME inference model
infer = Infer(args)
def image_inference(
source_img: gr.inputs.Image = None,
driver_img: gr.inputs.Image = None
):
out = infer.evaluate(source_img, driver_img, crop_center=False)
res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(),
out['source_information']['data_dict']['target_img'][0].cpu(),
out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2))
return res[..., ::-1]
def extract_frames(driver_vid):
image_frames = []
vid = cv2.VideoCapture(driver_vid) # path to mp4
while True:
success, img = vid.read()
if not success: break
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(img)
image_frames.append(pil_img)
return image_frames
def video_inference(source_img, driver_vid):
image_frames = extract_frames(driver_vid)
resulted_imgs = defaultdict(list)
video_folder = 'jenya_driver/'
image_frames = sorted(glob(f"{video_folder}/*", recursive=True), key=lambda x: int(x.split('/')[-1][:-4]))
mask_hard_threshold = 0.5
N = len(image_frames)//20
for i in range(0, N, 4):
new_out = infer.evaluate(source_img, Image.open(image_frames[i]),
source_information_for_reuse=out.get('source_information'))
mask_pred = (new_out['pred_target_unet_mask'].cpu() > mask_hard_threshold).float()
mask_pred = mask_errosion(mask_pred[0].float().numpy() * 255)
render = new_out['pred_target_img'].cpu() * (mask_pred) + (1 - mask_pred)
normals = process_black_shape(((new_out['pred_target_normal'][0].cpu() + 1) / 2 * mask_pred + (1 - mask_pred) ) )
normals[normals==0.5]=1.
resulted_imgs['res_normal'].append(tensor2image(normals))
resulted_imgs['res_mesh_images'].append(tensor2image(new_out['pred_target_shape_img'][0]))
resulted_imgs['res_renders'].append(tensor2image(render[0]))
video = np.array(resulted_imgs['res_renders'])
fig = plt.figure()
im = plt.imshow(video[0,:,:,::-1])
plt.axis('off')
plt.close() # this is required to not display the generated image
def init():
im.set_data(video[0,:,:,::-1])
def animate(i):
im.set_data(video[i,:,:,::-1])
return im
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=video.shape[0], interval=30)
return anim
with gr.Blocks() as demo:
gr.Markdown("# **<p align='center'>ROME: Realistic one-shot mesh-based head avatars</p>**")
gr.Markdown(
"""
<p style='text-align: center'>
Create a personal avatar from just a single image using ROME.
<br> <a href='https://arxiv.org/abs/2206.08343' target='_blank'>Paper</a> | <a href='https://samsunglabs.github.io/rome' target='_blank'>Project Page</a> | <a href='https://github.com/SamsungLabs/rome' target='_blank'>Github</a>
</p>
"""
)
with gr.Tab("Image Inference"):
with gr.Row():
source_img = gr.Image(type="pil", label="source image", show_label=True)
driver_img = gr.Image(type="pil", label="driver image", show_label=True)
image_output = gr.Image()
image_button = gr.Button("Predict")
with gr.Tab("Video Inference"):
with gr.Row():
source_img2 = gr.Image(type="pil", label="source image", show_label=True)
driver_vid = gr.Video(label="driver video")
video_output = gr.Image()
video_button = gr.Button("Predict")
gr.Examples(
examples=[
["./examples/lincoln.jpg", "./examples/taras2.jpg"],
["./examples/lincoln.jpg", "./examples/taras1.jpg"]
],
inputs=[source_img, driver_img],
outputs=[image_output],
fn=image_inference,
cache_examples=True
)
image_button.click(image_inference, inputs=[source_img, driver_img], outputs=image_output)
video_button.click(video_inference, inputs=[source_img2, driver_vid], outputs=video_output)
demo.launch() |