Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,879 Bytes
ac28dc4 9340499 e74aea7 ac28dc4 e74aea7 ac28dc4 e74aea7 ac28dc4 e74aea7 ac28dc4 e74aea7 ac28dc4 e74aea7 ac28dc4 e74aea7 ac28dc4 1174a8a e74aea7 1174a8a 9340499 e74aea7 9340499 c0fc291 ac28dc4 50415c8 1174a8a e74aea7 ac28dc4 91da599 ac28dc4 e74aea7 9340499 ac28dc4 e74aea7 ac28dc4 1174a8a c7222eb 1174a8a ac28dc4 1174a8a ac28dc4 9340499 e74aea7 9340499 e74aea7 9340499 e74aea7 9340499 e74aea7 9340499 e74aea7 ac28dc4 10c4fbc 9340499 10c4fbc ac28dc4 10c4fbc ac28dc4 47357d0 e74aea7 169607b e74aea7 169607b e74aea7 ac28dc4 10c4fbc ac28dc4 ec4d5dc 10c4fbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import gradio as gr
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np
from pydub import AudioSegment
import spaces
# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
"config_dit_mel_seed_facodec_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load additional modules
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"hift.pt",
"hifigan.yml")
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
hift_gen.eval()
hift_gen.to(device)
from modules.bigvgan import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
if speech_tokenizer_type == 'cosyvoice':
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
device='cuda', device_id=0)
elif speech_tokenizer_type == 'facodec':
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]
# Generate mel spectrograms
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": 8000,
"center": False
}
mel_fn_args_f0 = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
# f0 conditioned model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_seed_v2_uvit_facodec_small_wavenet_f0_bigvgan_pruned.pth",
"config_dit_mel_seed_facodec_small_wavenet_f0.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model_f0 = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
model_f0[key].eval()
model_f0[key].to(device)
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# f0 extractor
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
def adjust_f0_semitones(f0_sequence, n_semitones):
factor = 2 ** (n_semitones / 12)
return f0_sequence * factor
def crossfade(chunk1, chunk2, overlap):
fade_out = np.linspace(1, 0, overlap)
fade_in = np.linspace(0, 1, overlap)
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
# streaming and chunk processing related params
max_context_window = sr // hop_length * 30
overlap_frame_len = 64
overlap_wave_len = overlap_frame_len * hop_length
bitrate = "320k"
@spaces.GPU
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers, f0_condition, auto_f0_adjust, pitch_shift):
inference_module = model if not f0_condition else model_f0
mel_fn = to_mel if not f0_condition else to_mel_f0
# Load audio
source_audio = librosa.load(source, sr=sr)[0]
ref_audio = librosa.load(target, sr=sr)[0]
# Process audio
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
# Resample
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
# Extract features
if speech_tokenizer_type == 'cosyvoice':
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
elif speech_tokenizer_type == 'facodec':
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
waves_input = converted_waves_24k.unsqueeze(1)
max_wave_len_per_chunk = 24000 * 20
wave_input_chunks = [
waves_input[..., i:i + max_wave_len_per_chunk] for i in range(0, waves_input.size(-1), max_wave_len_per_chunk)
]
S_alt_chunks = []
for i, chunk in enumerate(wave_input_chunks):
z = codec_encoder.encoder(chunk)
(
quantized,
codes
) = codec_encoder.quantizer(
z,
chunk,
)
S_alt = torch.cat([codes[1], codes[0]], dim=1)
S_alt_chunks.append(S_alt)
S_alt = torch.cat(S_alt_chunks, dim=-1)
# S_ori should be extracted in the same way
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
waves_input = waves_24k.unsqueeze(1)
z = codec_encoder.encoder(waves_input)
(
quantized,
codes
) = codec_encoder.quantizer(
z,
waves_input,
)
S_ori = torch.cat([codes[1], codes[0]], dim=1)
mel = mel_fn(source_audio.to(device).float())
mel2 = mel_fn(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
if f0_condition:
waves_16k = torchaudio.functional.resample(waves_24k, sr, 16000)
converted_waves_16k = torchaudio.functional.resample(converted_waves_24k, sr, 16000)
F0_ori = rmvpe.infer_from_audio(waves_16k[0], thred=0.03)
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03)
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
voiced_F0_ori = F0_ori[F0_ori > 1]
voiced_F0_alt = F0_alt[F0_alt > 1]
log_f0_alt = torch.log(F0_alt + 1e-5)
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
median_log_f0_ori = torch.median(voiced_log_f0_ori)
median_log_f0_alt = torch.median(voiced_log_f0_alt)
# mean_log_f0_ori = torch.mean(voiced_log_f0_ori)
# mean_log_f0_alt = torch.mean(voiced_log_f0_alt)
# shift alt log f0 level to ori log f0 level
shifted_log_f0_alt = log_f0_alt.clone()
if auto_f0_adjust:
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
if pitch_shift != 0:
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
else:
F0_ori = None
F0_alt = None
shifted_f0_alt = None
# Length regulation
cond = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers), f0=shifted_f0_alt)[0]
prompt_condition = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers), f0=F0_ori)[0]
max_source_window = max_context_window - mel2.size(2)
# split source condition (cond) into chunks
processed_frames = 0
generated_wave_chunks = []
# generate chunk by chunk and stream the output
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
# Voice Conversion
vc_target = inference_module.cfm.inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, mel2.size(-1):]
if not f0_condition:
vc_wave = hift_gen.inference(vc_target, f0=None)
else:
vc_wave = bigvgan_model(vc_target)[0]
if processed_frames == 0:
if is_last_chunk:
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
break
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, None
elif is_last_chunk:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
break
else:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
output_wave = (output_wave * 32768.0).astype(np.int16)
mp3_bytes = AudioSegment(
output_wave.tobytes(), frame_rate=sr,
sample_width=output_wave.dtype.itemsize, channels=1
).export(format="mp3", bitrate=bitrate).read()
yield mp3_bytes, None
if __name__ == "__main__":
description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
"无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
inputs = [
gr.Audio(type="filepath", label="Source Audio / 源音频"),
gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N FAcodec Quantizers / FAcodec码本数量", info="the less FAcodec quantizer used, the less prosody of source audio is preserved / 使用的FAcodec码本越少,源音频的韵律保留越少"),
gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
]
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 1, False, True, 0],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, 1, True, True, 0],
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
"examples/reference/teio_0.wav", 100, 1.0, 0.7, 1, True, False, 0],
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
"examples/reference/trump_0.wav", 50, 1.0, 0.7, 1, True, False, -12],
]
outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')]
gr.Interface(fn=voice_conversion,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion",
examples=examples,
cache_examples=False,
).launch() |