Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import itertools | |
import sys | |
import time | |
from pathlib import Path | |
from typing import Optional, Tuple | |
import torch | |
import torch._dynamo.config | |
import torch._inductor.config | |
def device_sync(device): | |
if "cuda" in device: | |
torch.cuda.synchronize(device) | |
elif ("cpu" in device) or ("mps" in device): | |
pass | |
else: | |
print(f"device={device} is not yet suppported") | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.triton.unique_kernel_names = True | |
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future | |
default_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# support running without installing as a package | |
wd = Path(__file__).parent.parent.resolve() | |
sys.path.append(str(wd)) | |
from model import Transformer | |
from tokenizer import get_tokenizer | |
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs_sort).exponential_(1) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None): | |
logits = logits / max(temperature, 1e-5) | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
pivot = v.select(-1, -1).unsqueeze(-1) | |
logits = torch.where(logits < pivot, -float("Inf"), logits) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None): | |
probs = logits_to_probs(logits[0, -1], temperature, top_k) | |
idx_next = multinomial_sample_one_no_sync(probs) | |
return idx_next, probs | |
def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor: | |
# input_pos: [B, S] | |
logits = model(x, input_pos) | |
return sample(logits, **sampling_kwargs)[0] | |
def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]: | |
# input_pos: [B, 1] | |
assert input_pos.shape[-1] == 1 | |
logits = model(x, input_pos) | |
return sample(logits, **sampling_kwargs) | |
def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs): | |
new_tokens, new_probs = [], [] | |
for i in range(num_new_tokens): | |
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here | |
next_token, next_prob = decode_one_token( | |
model, cur_token, input_pos, **sampling_kwargs | |
) | |
input_pos += 1 | |
new_tokens.append(next_token.clone()) | |
callback(new_tokens[-1]) | |
new_probs.append(next_prob.clone()) | |
cur_token = next_token.view(1, -1) | |
return new_tokens, new_probs | |
def model_forward(model, x, input_pos): | |
return model(x, input_pos) | |
def speculative_decode( | |
model: Transformer, | |
draft_model: Transformer, | |
cur_token: torch.Tensor, | |
input_pos: int, | |
speculate_k: int, | |
**sampling_kwargs | |
) -> torch.Tensor: | |
# draft model inference sequentially | |
device = cur_token.device | |
orig_input_pos = torch.tensor([input_pos], dtype=torch.int64, device=cur_token.device) | |
draft_tokens, draft_probs = decode_n_tokens(draft_model, cur_token.view(1, -1), orig_input_pos.clone(), speculate_k, **sampling_kwargs) | |
draft_tokens = torch.cat(draft_tokens) | |
# parallel inference on target model using draft tokens | |
target_logits = model_forward( | |
model, | |
torch.cat([cur_token.view(1), draft_tokens]).view(1, -1), | |
torch.arange(input_pos, input_pos + speculate_k + 1, device=cur_token.device) | |
) | |
target_probs = logits_to_probs(target_logits[0], **sampling_kwargs) | |
draft_probs = torch.stack(draft_probs) | |
# q: target prob, p: draft prob | |
# q >= p: always accept draft token | |
# q < p: q/p prob to accept draft token | |
p = draft_probs[torch.arange(0, speculate_k, device=device), draft_tokens] | |
q = target_probs[torch.arange(0, speculate_k, device=device), draft_tokens] | |
accept_draft_prob = torch.minimum(torch.ones(()), q[:speculate_k]/ p) | |
rejected_locations = (torch.rand_like(accept_draft_prob) > accept_draft_prob).nonzero() | |
if rejected_locations.shape[0] == 0: # All draft tokens have been accepted | |
accept_length = speculate_k + 1 | |
last_token = multinomial_sample_one_no_sync(target_probs[-1]) | |
# fill last token into draft model | |
model_forward( | |
draft_model, | |
draft_tokens[-1].view(1, -1), | |
orig_input_pos + speculate_k, | |
) | |
return torch.cat([draft_tokens, last_token]) | |
else: | |
accept_length = rejected_locations[0].item() | |
p = draft_probs[accept_length] | |
q = target_probs[accept_length] | |
new = q - p | |
new = torch.where(new > 0, new, 0.0) | |
new = new / new.sum() | |
next_token = multinomial_sample_one_no_sync(new) | |
return torch.cat([draft_tokens[:accept_length], next_token]) | |
def generate( | |
model: Transformer, | |
prompt: torch.Tensor, | |
max_new_tokens: int, | |
*, | |
interactive: bool, | |
draft_model: Transformer, | |
speculate_k: Optional[int] = 8, | |
callback = lambda x: x, | |
**sampling_kwargs | |
) -> torch.Tensor: | |
""" | |
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. | |
""" | |
is_speculative = draft_model is not None | |
# create an empty tensor of the expected final shape and fill in the current tokens | |
T = prompt.size(0) | |
T_new = T + max_new_tokens | |
if interactive: | |
max_seq_length = 350 | |
else: | |
max_seq_length = min(T_new, model.config.block_size) | |
device, dtype = prompt.device, prompt.dtype | |
max_seq_length = max_seq_length + speculate_k + 1 if is_speculative else max_seq_length | |
with torch.device(device): | |
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length) | |
if is_speculative and draft_model is not model: | |
draft_model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length) | |
# create an empty tensor of the expected final shape and fill in the current tokens | |
empty = torch.empty(T_new, dtype=dtype, device=device) | |
empty[:T] = prompt | |
seq = empty | |
input_pos = torch.arange(0, T, device=device) | |
next_token = prefill(model, prompt.view(1, -1), input_pos, **sampling_kwargs).clone() | |
if is_speculative: | |
prefill(draft_model, prompt.view(1, -1), input_pos, **sampling_kwargs) | |
seq[T] = next_token | |
input_pos = torch.tensor([T], device=device, dtype=torch.int) | |
accept_counts = [0] * (speculate_k + 1) | |
if is_speculative: | |
input_pos = input_pos.item() # for speculative decoding easier to keep on host | |
while input_pos < T_new - 1: | |
cur_token = next_token.view(()) | |
next_tokens = speculative_decode( | |
model, draft_model, cur_token, input_pos, speculate_k, **sampling_kwargs | |
) | |
accept_counts[len(next_tokens) - 1] += 1 | |
num_added = min(T_new - input_pos - 1, len(next_tokens)) | |
seq[input_pos + 1 : input_pos + num_added + 1] = next_tokens[: num_added] | |
for i in next_tokens[: num_added,]: | |
callback(i) | |
input_pos = input_pos + num_added | |
next_token = next_tokens[-1] | |
else: | |
generated_tokens, _ = decode_n_tokens(model, next_token.view(1, -1), input_pos, max_new_tokens - 1, callback=callback, **sampling_kwargs) | |
seq[T + 1:] = torch.cat(generated_tokens) | |
generate_stats = { | |
'accept_counts': accept_counts | |
} | |
return seq, generate_stats | |
def encode_tokens(tokenizer, string, bos=True, device=default_device): | |
tokens = tokenizer.encode(string) | |
if bos: | |
tokens = [tokenizer.bos_id()] + tokens | |
return torch.tensor(tokens, dtype=torch.int, device=device) | |
def _load_model(checkpoint_path, device, precision, use_tp): | |
use_cuda = 'cuda' in device | |
with torch.device('meta'): | |
model = Transformer.from_name(checkpoint_path.parent.name) | |
if "int8" in str(checkpoint_path): | |
print("Using int8 weight-only quantization!") | |
from quantize import WeightOnlyInt8QuantHandler | |
simple_quantizer = WeightOnlyInt8QuantHandler(model) | |
model = simple_quantizer.convert_for_runtime() | |
if "int4" in str(checkpoint_path): | |
print("Using int4 weight-only quantization!") | |
path_comps = checkpoint_path.name.split(".") | |
groupsize = int(path_comps[-2][1:]) | |
from quantize import WeightOnlyInt4QuantHandler | |
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize) | |
model = simple_quantizer.convert_for_runtime() | |
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True) | |
if "model" in checkpoint and "stories" in str(checkpoint_path): | |
checkpoint = checkpoint["model"] | |
model.load_state_dict(checkpoint, assign=True) | |
if use_tp: | |
from tp import apply_tp | |
print("Applying tensor parallel to model ...") | |
apply_tp(model) | |
model = model.to(device=device, dtype=precision) | |
return model.eval() | |
def _get_model_size(model): | |
model_size = 0 | |
for name, child in model.named_children(): | |
if not isinstance(child, torch.nn.Embedding): | |
model_size += sum( | |
[ | |
p.numel() * p.dtype.itemsize | |
for p in itertools.chain(child.parameters(), child.buffers()) | |
] | |
) | |
return model_size | |
B_INST, E_INST = "[INST]", "[/INST]" | |
def main( | |
prompt: str = "Hello, my name is", | |
interactive: bool = False, | |
num_samples: int = 5, | |
max_new_tokens: int = 100, | |
top_k: int = 200, | |
temperature: float = 0.8, | |
checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), | |
compile: bool = True, | |
compile_prefill: bool = False, | |
profile: Optional[Path] = None, | |
draft_checkpoint_path: Optional[Path] = None, | |
speculate_k: int = 5, | |
device=default_device, | |
) -> None: | |
"""Generates text samples based on a pre-trained Transformer model and tokenizer. | |
""" | |
assert checkpoint_path.is_file(), checkpoint_path | |
tokenizer_path = checkpoint_path.parent / "tokenizer.model" | |
assert tokenizer_path.is_file(), str(tokenizer_path) | |
global print | |
from tp import maybe_init_dist | |
rank = maybe_init_dist() | |
use_tp = rank is not None | |
if use_tp: | |
if rank != 0: | |
# only print on rank 0 | |
print = lambda *args, **kwargs: None | |
print(f"Using device={device}") | |
precision = torch.bfloat16 | |
is_speculative = draft_checkpoint_path is not None | |
is_chat = "chat" in str(checkpoint_path) | |
print("Loading model ...") | |
t0 = time.time() | |
model = _load_model(checkpoint_path, device, precision, use_tp) | |
if is_speculative: | |
draft_model = _load_model(draft_checkpoint_path, device, precision, use_tp) | |
else: | |
draft_model = None | |
device_sync(device=device) # MKG | |
print(f"Time to load model: {time.time() - t0:.02f} seconds") | |
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path) | |
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device) | |
prompt_length = encoded.size(0) | |
torch.manual_seed(1234) | |
model_size = _get_model_size(model) | |
if compile: | |
if is_speculative and use_tp: # and ("cuda" in device): | |
torch._inductor.config.triton.cudagraph_trees = False # Bug with cudagraph trees in this case | |
if is_speculative: | |
global model_forward, logits_to_prob | |
model_forward = torch.compile(model_forward, mode="reduce-overhead", fullgraph=True) | |
global decode_one_token, prefill | |
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True) | |
# Uncomment to squeeze more perf out of prefill | |
if compile_prefill: | |
prefill = torch.compile(prefill, fullgraph=True, dynamic=True) | |
aggregate_metrics = { | |
'tokens_per_sec': [], | |
'accept_counts': [], | |
} | |
start = -1 if compile else 0 | |
for i in range(start, num_samples): | |
device_sync(device=device) # MKG | |
if i >= 0 and interactive: | |
prompt = input("What is your prompt? ") | |
if is_chat: | |
prompt = f"{B_INST} {prompt.strip()} {E_INST}" | |
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device) | |
if interactive and i >= 0: | |
buffer = [] | |
period_id = tokenizer.encode('.')[0] | |
done_generating = False | |
def callback(x): | |
nonlocal done_generating | |
if done_generating: | |
return | |
buffer.append(tokenizer.decode([period_id] + x.tolist())[1:]) | |
if x.item() == tokenizer.eos_id(): | |
done_generating = True | |
if len(buffer) == 4 or done_generating: | |
print(''.join(buffer), end='', flush=True) | |
buffer.clear() | |
# print(, end='', flush=True) | |
else: | |
callback = lambda x : x | |
t0 = time.perf_counter() | |
import contextlib | |
if (i != num_samples - 1 or not profile) or (use_tp and rank != 0): | |
prof = contextlib.nullcontext() | |
else: | |
torch.profiler._utils._init_for_cuda_graphs() | |
prof = torch.profiler.profile() | |
with prof: | |
y, metrics = generate( | |
model, | |
encoded, | |
max_new_tokens, | |
draft_model=draft_model, | |
speculate_k=speculate_k, | |
interactive=interactive, | |
callback=callback, | |
temperature=temperature, | |
top_k=top_k, | |
) | |
aggregate_metrics['accept_counts'].append(metrics['accept_counts']) | |
if i == -1: | |
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") | |
continue | |
if hasattr(prof, "export_chrome_trace"): | |
if use_tp: | |
prof.export_chrome_trace(f"{profile}_rank_{rank}.json") | |
else: | |
prof.export_chrome_trace(f"{profile}.json") | |
device_sync(device=device) # MKG | |
t = time.perf_counter() - t0 | |
if not interactive: | |
print(tokenizer.decode(y.tolist())) | |
else: | |
print() | |
tokens_generated = y.size(0) - prompt_length | |
tokens_sec = tokens_generated / t | |
aggregate_metrics['tokens_per_sec'].append(tokens_sec) | |
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec") | |
print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s") | |
print("==========") | |
if is_speculative: | |
counts_aggregated = [sum(i) for i in zip(*aggregate_metrics['accept_counts'])] | |
acceptance_probs = [i/sum(counts_aggregated) for i in counts_aggregated] | |
print(f"Acceptance probs: {acceptance_probs}") | |
print(f"Mean Accepted: {sum([idx * i for idx, i in enumerate(counts_aggregated)])/sum(counts_aggregated)}") | |
print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}") | |
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB") | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser(description='Your CLI description.') | |
parser.add_argument('--prompt', type=str, default="Hello, my name is", help='Input prompt.') | |
parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode') | |
parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.') | |
parser.add_argument('--max_new_tokens', type=int, default=200, help='Maximum number of new tokens.') | |
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.') | |
parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.') | |
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), help='Model checkpoint path.') | |
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.') | |
parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)') | |
parser.add_argument('--profile', type=Path, default=None, help='Profile path.') | |
parser.add_argument('--speculate_k', type=int, default=5, help='Speculative execution depth.') | |
parser.add_argument('--draft_checkpoint_path', type=Path, default=None, help='Draft checkpoint path.') | |
parser.add_argument('--device', type=str, default=default_device, help='Device to use') | |
args = parser.parse_args() | |
main( | |
args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.top_k, | |
args.temperature, args.checkpoint_path, args.compile, args.compile_prefill, args.profile, args.draft_checkpoint_path, | |
args.speculate_k, args.device | |
) | |