Spaces:
Running
on
Zero
Running
on
Zero
Update modules/length_regulator.py
Browse files- modules/length_regulator.py +141 -118
modules/length_regulator.py
CHANGED
@@ -1,118 +1,141 @@
|
|
1 |
-
from typing import Tuple
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
from modules.commons import sequence_mask
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
f0_coarse =
|
22 |
-
f0_coarse = f0_coarse
|
23 |
-
f0_coarse = f0_coarse
|
24 |
-
f0_coarse = f0_coarse
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
self.
|
61 |
-
|
62 |
-
self.
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
self.f0_condition =
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from modules.commons import sequence_mask
|
6 |
+
import numpy as np
|
7 |
+
from dac.nn.quantize import VectorQuantize
|
8 |
+
|
9 |
+
# f0_bin = 256
|
10 |
+
f0_max = 1100.0
|
11 |
+
f0_min = 50.0
|
12 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
13 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
14 |
+
|
15 |
+
def f0_to_coarse(f0, f0_bin):
|
16 |
+
f0_mel = 1127 * (1 + f0 / 700).log()
|
17 |
+
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
|
18 |
+
b = f0_mel_min * a - 1.
|
19 |
+
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
|
20 |
+
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
|
21 |
+
f0_coarse = torch.round(f0_mel).long()
|
22 |
+
f0_coarse = f0_coarse * (f0_coarse > 0)
|
23 |
+
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
|
24 |
+
f0_coarse = f0_coarse * (f0_coarse < f0_bin)
|
25 |
+
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
|
26 |
+
return f0_coarse
|
27 |
+
|
28 |
+
class InterpolateRegulator(nn.Module):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
channels: int,
|
32 |
+
sampling_ratios: Tuple,
|
33 |
+
is_discrete: bool = False,
|
34 |
+
in_channels: int = None, # only applies to continuous input
|
35 |
+
vector_quantize: bool = False, # whether to use vector quantization, only applies to continuous input
|
36 |
+
codebook_size: int = 1024, # for discrete only
|
37 |
+
out_channels: int = None,
|
38 |
+
groups: int = 1,
|
39 |
+
n_codebooks: int = 1, # number of codebooks
|
40 |
+
quantizer_dropout: float = 0.0, # dropout for quantizer
|
41 |
+
f0_condition: bool = False,
|
42 |
+
n_f0_bins: int = 512,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.sampling_ratios = sampling_ratios
|
46 |
+
out_channels = out_channels or channels
|
47 |
+
model = nn.ModuleList([])
|
48 |
+
if len(sampling_ratios) > 0:
|
49 |
+
self.interpolate = True
|
50 |
+
for _ in sampling_ratios:
|
51 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
52 |
+
norm = nn.GroupNorm(groups, channels)
|
53 |
+
act = nn.Mish()
|
54 |
+
model.extend([module, norm, act])
|
55 |
+
else:
|
56 |
+
self.interpolate = False
|
57 |
+
model.append(
|
58 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
59 |
+
)
|
60 |
+
self.model = nn.Sequential(*model)
|
61 |
+
self.embedding = nn.Embedding(codebook_size, channels)
|
62 |
+
self.is_discrete = is_discrete
|
63 |
+
|
64 |
+
self.mask_token = nn.Parameter(torch.zeros(1, channels))
|
65 |
+
|
66 |
+
self.n_codebooks = n_codebooks
|
67 |
+
if n_codebooks > 1:
|
68 |
+
self.extra_codebooks = nn.ModuleList([
|
69 |
+
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1)
|
70 |
+
])
|
71 |
+
self.extra_codebook_mask_tokens = nn.ParameterList([
|
72 |
+
nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1)
|
73 |
+
])
|
74 |
+
self.quantizer_dropout = quantizer_dropout
|
75 |
+
|
76 |
+
if f0_condition:
|
77 |
+
self.f0_embedding = nn.Embedding(n_f0_bins, channels)
|
78 |
+
self.f0_condition = f0_condition
|
79 |
+
self.n_f0_bins = n_f0_bins
|
80 |
+
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins)
|
81 |
+
self.f0_mask = nn.Parameter(torch.zeros(1, channels))
|
82 |
+
else:
|
83 |
+
self.f0_condition = False
|
84 |
+
|
85 |
+
if not is_discrete:
|
86 |
+
self.content_in_proj = nn.Linear(in_channels, channels)
|
87 |
+
if vector_quantize:
|
88 |
+
self.vq = VectorQuantize(channels, codebook_size, 8)
|
89 |
+
|
90 |
+
def forward(self, x, ylens=None, n_quantizers=None, f0=None):
|
91 |
+
# apply token drop
|
92 |
+
if self.training:
|
93 |
+
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks
|
94 |
+
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],))
|
95 |
+
n_dropout = int(x.shape[0] * self.quantizer_dropout)
|
96 |
+
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
97 |
+
n_quantizers = n_quantizers.to(x.device)
|
98 |
+
# decide whether to drop for each sample in batch
|
99 |
+
else:
|
100 |
+
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers)
|
101 |
+
if self.is_discrete:
|
102 |
+
if self.n_codebooks > 1:
|
103 |
+
assert len(x.size()) == 3
|
104 |
+
x_emb = self.embedding(x[:, 0])
|
105 |
+
for i, emb in enumerate(self.extra_codebooks):
|
106 |
+
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1])
|
107 |
+
# add mask token if not using this codebook
|
108 |
+
# x_emb = x_emb + (n_quantizers <= i+1)[..., None, None] * self.extra_codebook_mask_tokens[i]
|
109 |
+
x = x_emb
|
110 |
+
elif self.n_codebooks == 1:
|
111 |
+
if len(x.size()) == 2:
|
112 |
+
x = self.embedding(x)
|
113 |
+
else:
|
114 |
+
x = self.embedding(x[:, 0])
|
115 |
+
else:
|
116 |
+
x = self.content_in_proj(x)
|
117 |
+
# x in (B, T, D)
|
118 |
+
mask = sequence_mask(ylens).unsqueeze(-1)
|
119 |
+
if self.interpolate:
|
120 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
121 |
+
else:
|
122 |
+
x = x.transpose(1, 2).contiguous()
|
123 |
+
mask = mask[:, :x.size(2), :]
|
124 |
+
ylens = ylens.clamp(max=x.size(2)).long()
|
125 |
+
if self.f0_condition:
|
126 |
+
if f0 is None:
|
127 |
+
x = x + self.f0_mask.unsqueeze(-1)
|
128 |
+
else:
|
129 |
+
quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T)
|
130 |
+
#quantized_f0 = f0_to_coarse(f0, self.n_f0_bins)
|
131 |
+
#quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long()
|
132 |
+
f0_emb = self.f0_embedding(quantized_f0)
|
133 |
+
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
134 |
+
x = x + f0_emb
|
135 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
136 |
+
if hasattr(self, 'vq'):
|
137 |
+
out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2))
|
138 |
+
out_q = out_q.transpose(1, 2)
|
139 |
+
return out_q * mask, ylens, codes, commitment_loss, codebook_loss
|
140 |
+
olens = ylens
|
141 |
+
return out * mask, olens, None, None, None
|