|
import matplotlib.pyplot as plt |
|
import IPython.display as ipd |
|
|
|
import os |
|
import json |
|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.utils.data import DataLoader |
|
|
|
import commons |
|
import utils |
|
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import text_to_sequence |
|
|
|
from scipy.io.wavfile import write |
|
|
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
hps = utils.get_hparams_from_file("./configs/yuzu.json") |
|
|
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model).cuda() |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint("pretrained_models/yuzu.pth", net_g, None) |