|
import torch |
|
import commons |
|
import models |
|
class SynthesizerTrn(models.SynthesizerTrn): |
|
""" |
|
Synthesizer for Training |
|
""" |
|
|
|
def __init__(self, |
|
n_vocab, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
n_speakers=0, |
|
gin_channels=0, |
|
use_sdp=True, |
|
**kwargs): |
|
|
|
super().__init__( |
|
n_vocab, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
n_speakers=n_speakers, |
|
gin_channels=gin_channels, |
|
use_sdp=use_sdp, |
|
**kwargs |
|
) |
|
|
|
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None): |
|
from ONNXVITS_utils import runonnx |
|
|
|
|
|
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) |
|
x = torch.from_numpy(x) |
|
m_p = torch.from_numpy(m_p) |
|
logs_p = torch.from_numpy(logs_p) |
|
x_mask = torch.from_numpy(x_mask) |
|
|
|
if self.n_speakers > 0: |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
|
|
|
|
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy()) |
|
logw = torch.from_numpy(logw[0]) |
|
|
|
w = torch.exp(logw) * x_mask * length_scale |
|
w_ceil = torch.ceil(w) |
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() |
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) |
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) |
|
attn = commons.generate_path(w_ceil, attn_mask) |
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) |
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale |
|
|
|
|
|
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy()) |
|
z = torch.from_numpy(z[0]) |
|
|
|
|
|
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy()) |
|
o = torch.from_numpy(o[0]) |
|
|
|
return o, attn, y_mask, (z, z_p, m_p, logs_p) |
|
|
|
def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, |
|
emotion_embedding=None): |
|
from ONNXVITS_utils import runonnx |
|
|
|
|
|
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) |
|
x = torch.from_numpy(x) |
|
m_p = torch.from_numpy(m_p) |
|
logs_p = torch.from_numpy(logs_p) |
|
x_mask = torch.from_numpy(x_mask) |
|
|
|
if self.n_speakers > 0: |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
|
|
|
|
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy()) |
|
logw = torch.from_numpy(logw[0]) |
|
|
|
w = torch.exp(logw) * x_mask * length_scale |
|
w_ceil = torch.ceil(w) |
|
return list(w_ceil.squeeze()) |
|
|
|
def infer_with_duration(self, x, x_lengths, w_ceil, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, |
|
emotion_embedding=None): |
|
from ONNXVITS_utils import runonnx |
|
|
|
|
|
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) |
|
x = torch.from_numpy(x) |
|
m_p = torch.from_numpy(m_p) |
|
logs_p = torch.from_numpy(logs_p) |
|
x_mask = torch.from_numpy(x_mask) |
|
|
|
if self.n_speakers > 0: |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
assert len(w_ceil) == x.shape[2] |
|
w_ceil = torch.FloatTensor(w_ceil).reshape(1, 1, -1) |
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() |
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) |
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) |
|
attn = commons.generate_path(w_ceil, attn_mask) |
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) |
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale |
|
|
|
|
|
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy()) |
|
z = torch.from_numpy(z[0]) |
|
|
|
|
|
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy()) |
|
o = torch.from_numpy(o[0]) |
|
|
|
return o, attn, y_mask, (z, z_p, m_p, logs_p) |