|
import logging |
|
from json import loads |
|
from torch import load, FloatTensor |
|
from numpy import float32 |
|
import librosa |
|
|
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model): |
|
checkpoint_dict = load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict['iteration'] |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict= {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
except: |
|
logging.info("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
logging.info("Loaded checkpoint '{}' (iteration {})" .format( |
|
checkpoint_path, iteration)) |
|
return |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = loads(data) |
|
|
|
hparams = HParams(**config) |
|
return hparams |
|
|
|
|
|
def load_audio_to_torch(full_path, target_sampling_rate): |
|
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True) |
|
return FloatTensor(audio.astype(float32)) |
|
|