import os import google.generativeai as genai import gradio as gr import requests # Configure Google Gemini API genai.configure(api_key=os.getenv("GEMINI_API_KEY")) # Play.ht API keys API_KEY = os.getenv('PLAY_API_KEY') USER_ID = os.getenv('PLAY_USER_ID') # Function to upload image to Gemini and get roasted text def upload_to_gemini(path, mime_type="image/jpeg"): file = genai.upload_file(path, mime_type=mime_type) return file def generate_roast(image_path): # Upload the image to Gemini and get the text uploaded_file = upload_to_gemini(image_path) generation_config = { "temperature": 1, "top_p": 0.95, "top_k": 40, "max_output_tokens": 8192, "response_mime_type": "text/plain", } model = genai.GenerativeModel( model_name="gemini-1.5-flash-002", generation_config=generation_config, system_instruction="You are a professional satirist and fashion expert. You will be given a profile picture. Your duty is to roast whatever is given to you in the funniest way possible!", ) chat_session = model.start_chat( history=[{"role": "user", "parts": [uploaded_file]}] ) response = chat_session.send_message("Roast this image!") return response.text # Function to convert text to speech with Play.ht def text_to_speech(text): url = "https://api.play.ht/api/v2/tts/stream" payload = { "voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json", "output_format": "mp3", "text": text, } headers = { "accept": "audio/mpeg", "content-type": "application/json", "Authorization": API_KEY, "X-User-ID": USER_ID } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: audio_path = "output_audio.mp3" with open(audio_path, "wb") as audio_file: audio_file.write(response.content) return audio_path else: return f"Error: {response.status_code} - {response.text}" # Gradio Interface with gr.Blocks(theme={"primary_hue": "#b4fd83"}) as demo: gr.Markdown("# Image to Text-to-Speech Roasting App") gr.Markdown("Upload an image, and the AI will roast it and convert the roast to audio.") with gr.Row(): with gr.Column(): image_input = gr.Image(type="filepath", label="Upload Image") with gr.Column(): output_text = gr.Textbox(label="Roast Text") audio_output = gr.Audio(label="Roast Audio") def process_image(image): roast_text = generate_roast(image) audio_path = text_to_speech(roast_text) return roast_text, audio_path submit_button = gr.Button("Generate Roast") submit_button.click(process_image, inputs=image_input, outputs=[output_text, audio_output]) # Launch the app demo.launch(debug=True)