Ferran Sanchez Llado
Implemented conversation mode
b5f5337
from transformers import pipeline
import gradio as gr
from openai import OpenAI
import os
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
)
pipe = pipeline(model="Potatoasdasdasdasda/whisper-base-es-improved-2")
def transcribe(audio):
text = pipe(audio)["text"]
return text
def create_chat_history(chat_history, msg):
messages = [{"role": "system", "content": "Tu eres un asistente util."}]
for request, response in chat_history:
messages.append({"role": "user", "content": request})
messages.append({"role": "assistant", "content": response})
messages.append({"role": "user", "content": msg})
return messages
def respond(audio, chat_history):
bot_request = transcribe(audio)
bot_response = client.chat.completions.create(
messages=create_chat_history(chat_history, bot_request),
model="gpt-3.5-turbo",
).choices[0].message.content
chat_history.append((bot_request, bot_response))
return None, chat_history
with gr.Blocks() as demo:
with gr.Tab("Microphone Mode"):
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
outputs="text",
title="Whisper Base Spanish Improved",
description="Realtime demo for Spanish speech recognition using a fine-tuned Whisper Base model.",
)
with gr.Tab("Conversation Mode"):
chatbot = gr.Chatbot(show_copy_button=True)
mic = gr.Audio(sources="microphone", type="filepath")
mic.stop_recording(respond, [mic, chatbot], [mic,chatbot])
demo.launch()