File size: 11,229 Bytes
de55b15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import re
import math
import random

from collections import defaultdict




def naive_parse(answer):
    out = []
    start = False
    end = False
    for l in reversed(list(answer)):
        if l in '0123456789' and not end:
            start = True
            out.append(l)
        else:
            if start:
                end = True
        
    out = reversed(out)
    return ''.join(out)


import re
import sys
import subprocess

def return_last_print(output, n):
    lines = output.strip().split('\n')
    if lines:
        return lines[n]
    else:
        return ""

def process_code(code, return_shell_output=False):
    
    def repl(match):
        if "real" not in match.group():
            return "{}{}".format(match.group()[:-1], ', real=True)')
        else:
            return "{}{}".format(match.group()[:-1], ')')
    code = re.sub(r"symbols\([^)]+\)", repl, code)

    if return_shell_output:
        code = code.replace('\n', '\n    ')
            # Add a try...except block
        code = "\ntry:\n    from sympy import *\n{}\nexcept Exception as e:\n    print(e)\n    print('FAIL')\n".format(code)
    
    if not return_shell_output:
        print(code)
    with open('code.py', 'w') as fout:
        fout.write(code)
    
    batcmd = 'timeout 7 ' + sys.executable + ' code.py'
    try:
        shell_output = subprocess.check_output(batcmd, shell=True).decode('utf8')
        return_value = return_last_print(shell_output, -1)
        print(shell_output)
        if return_shell_output:
            if return_value=='FAIL':
                CODE_STATUS = False
                return_value = return_last_print(shell_output, -2)
                if "not defined" in return_value:
                    return_value+='\nTry checking the formatting and imports'
            else:
                CODE_STATUS = True
            return return_value, CODE_STATUS  
        code_output = round(float(eval(return_value))) % 1000
    except Exception as e:
        print(e,'shell_output')
        code_output = -1
    
    if return_shell_output:
        if code_output==-1:
            CODE_STATUS = False
        else:
            CODE_STATUS = True
        return code_output, CODE_STATUS  
    
    
    return code_output


def process_text_output(output):
    result = output    
    try:
        result_output = re.findall(r'\\boxed\{(\d+)\}', result)

        print('BOXED', result_output)
        if not len(result_output):
            result_output = naive_parse(result)
        else:
            result_output = result_output[-1]

        print('BOXED FINAL', result_output)
        if not len(result_output):
            result_output = -1
        
        else:
            result_output = round(float(eval(result_output))) % 1000
    
    except Exception as e:
        print(e)
        print('ERROR PARSING TEXT')
        result_output = -1
    
    return result_output

from collections import defaultdict
from collections import Counter
def predict(problem):
    
    temperature = 0.9
    top_p = 3.0

    temperature_coding = 0.9
    top_p_coding = 3.0

   
    total_results = {}
    total_answers = {}
    best_stats = {}
    total_outputs = {}
    question_type_counts = {}
    starting_counts = (2,3)
    i = 0
    
    global n_repetitions,TOTAL_TOKENS,model,tokenizer,USE_PAST_KEY,NOTEBOOK_START_TIME,promplt_options,code,cot
    
    

    for jj in tqdm(range(n_repetitions)):
        best, best_count = best_stats.get(i,(-1,-1))
        if best_count>np.sqrt(jj):
            print("SKIPPING CAUSE ALREADY FOUND BEST")
            continue

        outputs = total_outputs.get(i,[])
        text_answers, code_answers = question_type_counts.get(i,starting_counts)
        results = total_results.get(i,[])
        answers = total_answers.get(i,[])  
        
        for _ in range(5):
            torch.cuda.empty_cache()
            gc.collect()
            time.sleep(0.2)
        
        try:
            ALREADY_GEN = 0
            code_error = None
            code_error_count = 0
            code_output = -1
            #initail_message = problem  + tool_instruction 
            counts = np.array([text_answers,code_answers])

            draw = choice(promplt_options, 1,
                          p=counts/counts.sum())

            initail_message = draw[0].format(problem,"{}")            
            prompt = f"User: {initail_message}"

            current_printed = len(prompt)
            print(f"{jj}_{prompt}\n")

            model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
            input_len = len(model_inputs['input_ids'][0])

            generation_output = model.generate(**model_inputs, 
                                               max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
                                               return_dict_in_generate=USE_PAST_KEY,
                                               do_sample = True,
                                               temperature = temperature,
                                               top_p = top_p,
                                               num_return_sequences=1, stopping_criteria = stopping_criteria)

            if USE_PAST_KEY:
                output_ids = generation_output.sequences[0]
            else:
                output_ids = generation_output[0]
            decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
            print(f"{decoded_output[current_printed:]}\n")
            current_printed += len(decoded_output[current_printed:])
            cummulative_code = ""
            
            stop_word_cond = False
            for stop_word in stop_words:
                stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
                
                
            while (stop_word_cond) and (ALREADY_GEN<(TOTAL_TOKENS)):

                if (decoded_output[-len("```python"):]=="```python"):
                    temperature_inner=temperature_coding
                    top_p_inner = top_p_coding
                    prompt = decoded_output
                else:
                    temperature_inner=temperature
                    top_p_inner = top_p
                    try:
                        if (decoded_output[-len("``````output"):]=="``````output"):
                            code_text = decoded_output.split('```python')[-1].split("``````")[0]
                        else:
                            code_text = decoded_output.split('```python')[-1].split("```")[0]
                        

                        cummulative_code+=code_text
                        code_output, CODE_STATUS = process_code(cummulative_code, return_shell_output=True)
                        print('CODE RESULTS', code_output)

                        if code_error==code_output:
                            code_error_count+=1
                        else:
                            code_error=code_output
                            code_error_count = 0

                        if not CODE_STATUS:
                            cummulative_code = cummulative_code[:-len(code_text)]

                            if code_error_count>=1:
                                print("REPEATED ERRORS")
                                break

                    except Exception as e:
                        print(e)
                        print('ERROR PARSING CODE')
                        code_output = -1

                    if code_output!=-1:
                        if (decoded_output[-len(")\n```"):]==")\n```"):
                            prompt = decoded_output+'```output\n'+str(code_output)+'\n```\n'
                        else:
                            prompt = decoded_output+'\n'+str(code_output)+'\n```\n'
                    else:
                        prompt = decoded_output
                        cummulative_code=""
                model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
                ALREADY_GEN =  len(model_inputs['input_ids'][0])-input_len

                if USE_PAST_KEY:
                    old_values = generation_output.past_key_values
                else:
                    old_values = None

                generation_output = model.generate(**model_inputs, 
                                                   max_new_tokens=TOTAL_TOKENS-ALREADY_GEN, 
                                                   return_dict_in_generate=USE_PAST_KEY,
                                                   past_key_values=old_values,
                                                   do_sample = True,
                                                   temperature = temperature_inner,
                                                   top_p = top_p_inner,
                                                   num_return_sequences=1, stopping_criteria = stopping_criteria)
                if USE_PAST_KEY:
                    output_ids = generation_output.sequences[0]
                else:
                    output_ids = generation_output[0]
                decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
                print(f"\nINTERMEDIATE OUT :\n{decoded_output[current_printed:]}\n")
                current_printed+=len(decoded_output[current_printed:])
                
                stop_word_cond = False
                for stop_word in stop_words:
                    stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
            if USE_PAST_KEY:
                output_ids = generation_output.sequences[0]
            else:
                output_ids = generation_output[0]

            raw_output = tokenizer.decode(output_ids[input_len:], skip_special_tokens=True)
            #print(f"\n\nOutput :\n{raw_output}\n")                            
            result_output = process_text_output(raw_output)
            
            try:
                code_output = round(float(eval(code_output))) % 1000
            except Exception as e:
                print(e,'final_eval')
                code_output = -1
        except Exception as e:
            print(e,"5")
            result_output, code_output = -1, -1

        if code_output!=-1:
            outputs.append(code_output)
            code_answers+=1

        if result_output!=-1:
            outputs.append(result_output)
            text_answers+=1

        if len(outputs) > 0:
            occurances = Counter(outputs).most_common()
            print(occurances)
            if occurances[0][1] > best_count:
                print("GOOD ANSWER UPDATED!")
                best = occurances[0][0]
                best_count = occurances[0][1]
            if occurances[0][1] > 5:
                print("ANSWER FOUND!")
                break

        results.append(result_output)
        answers.append(code_output)
        
        best_stats[i] = (best, best_count) 
        question_type_counts[i] = (text_answers, code_answers)
        total_outputs[i] = outputs
        
        total_results[i] = results
        total_answers[i] = answers

        print("code_answers",code_answers-starting_counts[1],"text_answers",text_answers-starting_counts[0])
    return best_stats[0][0]