Spaces:
Running
Running
import gradio as gr | |
import ctranslate2 | |
from transformers import AutoTokenizer | |
from huggingface_hub import snapshot_download | |
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot | |
import re | |
import os | |
# Define the model and tokenizer loading | |
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: " | |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") | |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") | |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") | |
iterations = 4 | |
test=True | |
# Function to generate predictions using the model | |
def get_prediction(question): | |
if test==True: | |
text="Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n" | |
return text | |
input_text = model_prompt + question | |
input_tokens = tokenizer.tokenize(input_text) | |
results = generator.generate_batch( | |
[input_tokens], | |
max_length=512, | |
sampling_temperature=0.7, | |
sampling_topk=40, | |
) | |
output_tokens = results[0].sequences[0] | |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) | |
return predicted_answer | |
# Function to parse the prediction to extract the answer and steps | |
def parse_prediction(prediction): | |
lines = prediction.strip().split('\n') | |
answer = None | |
steps = [] | |
for line in lines: | |
# Check for "Answer:" or "answer:" | |
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line) | |
if match: | |
answer = match.group(1).strip() | |
else: | |
steps.append(line) | |
if answer is None: | |
# If no "Answer:" found, assume last line is the answer | |
answer = lines[-1].strip() | |
steps = lines | |
steps_text = '\n'.join(steps).strip() | |
return answer, steps_text | |
# Function to perform majority voting and get steps | |
def majority_vote_with_steps(question, num_iterations=10): | |
all_predictions = [] | |
all_answers = [] | |
steps_list = [] | |
for _ in range(num_iterations): | |
prediction = get_prediction(question) | |
answer,sucess= postprocess_completion(prediction, return_status=True, last_code_block=True) | |
print(answer,sucess) | |
if sucess: | |
all_predictions.append(prediction) | |
all_answers.append(answer) | |
steps_list.append(prediction) | |
else: | |
answer, steps = parse_prediction(prediction) | |
all_predictions.append(prediction) | |
all_answers.append(answer) | |
steps_list.append(steps) | |
majority_voted_ans = get_majority_vote(all_answers) | |
if sucess: | |
print(type_check(majority_voted_ans)) | |
if type_check(majority_voted_ans) == "Polynomial": | |
plotfile = draw_polynomial_plot(majority_voted_ans) | |
else: | |
if os.path.exists("polynomial_plot.png"): | |
plotfile = "polynomial_plot.png" | |
else: | |
plotfile = None | |
# Get the majority voted answer | |
# Find the steps corresponding to the majority voted answer | |
for i, ans in enumerate(all_answers): | |
if ans == majority_voted_ans: | |
steps_solution = steps_list[i] | |
answer=parse_prediction(steps_solution) | |
break | |
else: | |
answer=majority_voted_ans | |
steps_solution = "No steps found" | |
return answer, steps_solution,plotfile | |
def gradio_interface(question, correct_answer): | |
final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations) | |
print(plotfile) | |
print(os.path.exists(plotfile),os.path.exists("polynomial_plot.png")) | |
return question, final_answer, steps_solution, correct_answer,plotfile | |
# Custom CSS for enhanced design (unchanged) | |
custom_css = """ | |
body { | |
background-color: #fafafa; | |
font-family: 'Open Sans', sans-serif; | |
} | |
.gradio-container { | |
background-color: #ffffff; | |
border: 3px solid #007acc; | |
border-radius: 15px; | |
padding: 20px; | |
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15); | |
max-width: 800px; | |
margin: 50px auto; | |
} | |
h1 { | |
font-family: 'Poppins', sans-serif; | |
color: #007acc; | |
font-weight: bold; | |
font-size: 32px; | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
p { | |
font-family: 'Roboto', sans-serif; | |
font-size: 18px; | |
color: #333; | |
text-align: center; | |
margin-bottom: 15px; | |
} | |
input, textarea { | |
font-family: 'Montserrat', sans-serif; | |
font-size: 16px; | |
padding: 10px; | |
border: 2px solid #007acc; | |
border-radius: 10px; | |
background-color: #f1f8ff; | |
margin-bottom: 15px; | |
} | |
#math_question, #correct_answer { | |
font-size: 20px; | |
font-family: 'Poppins', sans-serif; | |
font-weight: 500px; | |
color: #007acc; | |
margin-bottom: 5px; | |
display: inline-block; | |
} | |
textarea { | |
min-height: 150px; | |
} | |
.gr-button-primary { | |
background-color: #007acc !important; | |
color: white !important; | |
border-radius: 10px !important; | |
font-size: 18px !important; | |
font-weight: bold !important; | |
padding: 10px 20px !important; | |
font-family: 'Montserrat', sans-serif !important; | |
transition: background-color 0.3s ease !important; | |
} | |
.gr-button-primary:hover { | |
background-color: #005f99 !important; | |
} | |
.gr-button-secondary { | |
background-color: #f44336 !important; | |
color: white !important; | |
border-radius: 10px !important; | |
font-size: 18px !important; | |
font-weight: bold !important; | |
padding: 10px 20px !important; | |
font-family: 'Montserrat', sans-serif !important; | |
transition: background-color 0.3s ease !important; | |
} | |
.gr-button-secondary:hover { | |
background-color: #c62828 !important; | |
} | |
.gr-output { | |
background-color: #e0f7fa; | |
border: 2px solid #007acc; | |
border-radius: 10px; | |
padding: 15px; | |
font-size: 16px; | |
font-family: 'Roboto', sans-serif; | |
font-weight: bold; | |
color: #00796b; | |
} | |
""" | |
# Define the directory path | |
flagging_dir = "./flagged_data" | |
# Create the directory if it doesn't exist | |
if not os.path.exists(flagging_dir): | |
os.makedirs(flagging_dir) | |
# Gradio app setup with flagging | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"), | |
], | |
outputs=[ | |
gr.Textbox(label="Question", interactive=False), # Non-editable | |
gr.Textbox(label="Answer", interactive=False), # Non-editable | |
gr.Textbox(label="Solution", interactive=True), # Editable textbox for correct solution | |
gr.Image(label="Polynomial Plot", type="filepath") | |
], | |
title="🔢 Math Question Solver", | |
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.", | |
css=custom_css, # Apply custom CSS | |
flagging_dir=flagging_dir, # Directory to save flagged data | |
allow_flagging="auto" # Allow users to auto flag data | |
) | |
if __name__ == "__main__": | |
interface.launch() |