deepseekmath / temp.py
Pra-tham's picture
added backdooring
b984a91
raw
history blame
8.08 kB
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot
import re
import os
# Define the model and tokenizer loading
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 4
test=True
# Function to generate predictions using the model
def get_prediction(question):
if test==True:
text="Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n"
return text
input_text = model_prompt + question
input_tokens = tokenizer.tokenize(input_text)
results = generator.generate_batch(
[input_tokens],
max_length=512,
sampling_temperature=0.7,
sampling_topk=40,
)
output_tokens = results[0].sequences[0]
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
return predicted_answer
# Function to parse the prediction to extract the answer and steps
def parse_prediction(prediction):
lines = prediction.strip().split('\n')
answer = None
steps = []
for line in lines:
# Check for "Answer:" or "answer:"
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
if match:
answer = match.group(1).strip()
else:
steps.append(line)
if answer is None:
# If no "Answer:" found, assume last line is the answer
answer = lines[-1].strip()
steps = lines
steps_text = '\n'.join(steps).strip()
return answer, steps_text
# Function to perform majority voting and get steps
def majority_vote_with_steps(question, num_iterations=10):
all_predictions = []
all_answers = []
steps_list = []
for _ in range(num_iterations):
prediction = get_prediction(question)
answer,sucess= postprocess_completion(prediction, return_status=True, last_code_block=True)
print(answer,sucess)
if sucess:
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(prediction)
else:
answer, steps = parse_prediction(prediction)
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(steps)
majority_voted_ans = get_majority_vote(all_answers)
if sucess:
print(type_check(majority_voted_ans))
if type_check(majority_voted_ans) == "Polynomial":
plotfile = draw_polynomial_plot(majority_voted_ans)
else:
if os.path.exists("polynomial_plot.png"):
plotfile = "polynomial_plot.png"
else:
plotfile = None
# Get the majority voted answer
# Find the steps corresponding to the majority voted answer
for i, ans in enumerate(all_answers):
if ans == majority_voted_ans:
steps_solution = steps_list[i]
answer=parse_prediction(steps_solution)
break
else:
answer=majority_voted_ans
steps_solution = "No steps found"
return answer, steps_solution,plotfile
def gradio_interface(question, correct_answer):
final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations)
print(plotfile)
print(os.path.exists(plotfile),os.path.exists("polynomial_plot.png"))
return question, final_answer, steps_solution, correct_answer,plotfile
# Custom CSS for enhanced design (unchanged)
custom_css = """
body {
background-color: #fafafa;
font-family: 'Open Sans', sans-serif;
}
.gradio-container {
background-color: #ffffff;
border: 3px solid #007acc;
border-radius: 15px;
padding: 20px;
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
max-width: 800px;
margin: 50px auto;
}
h1 {
font-family: 'Poppins', sans-serif;
color: #007acc;
font-weight: bold;
font-size: 32px;
text-align: center;
margin-bottom: 20px;
}
p {
font-family: 'Roboto', sans-serif;
font-size: 18px;
color: #333;
text-align: center;
margin-bottom: 15px;
}
input, textarea {
font-family: 'Montserrat', sans-serif;
font-size: 16px;
padding: 10px;
border: 2px solid #007acc;
border-radius: 10px;
background-color: #f1f8ff;
margin-bottom: 15px;
}
#math_question, #correct_answer {
font-size: 20px;
font-family: 'Poppins', sans-serif;
font-weight: 500px;
color: #007acc;
margin-bottom: 5px;
display: inline-block;
}
textarea {
min-height: 150px;
}
.gr-button-primary {
background-color: #007acc !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-primary:hover {
background-color: #005f99 !important;
}
.gr-button-secondary {
background-color: #f44336 !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-secondary:hover {
background-color: #c62828 !important;
}
.gr-output {
background-color: #e0f7fa;
border: 2px solid #007acc;
border-radius: 10px;
padding: 15px;
font-size: 16px;
font-family: 'Roboto', sans-serif;
font-weight: bold;
color: #00796b;
}
"""
# Define the directory path
flagging_dir = "./flagged_data"
# Create the directory if it doesn't exist
if not os.path.exists(flagging_dir):
os.makedirs(flagging_dir)
# Gradio app setup with flagging
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
],
outputs=[
gr.Textbox(label="Question", interactive=False), # Non-editable
gr.Textbox(label="Answer", interactive=False), # Non-editable
gr.Textbox(label="Solution", interactive=True), # Editable textbox for correct solution
gr.Image(label="Polynomial Plot", type="filepath")
],
title="🔢 Math Question Solver",
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
css=custom_css, # Apply custom CSS
flagging_dir=flagging_dir, # Directory to save flagged data
allow_flagging="auto" # Allow users to auto flag data
)
if __name__ == "__main__":
interface.launch()