Spaces:
Running
Running
import gradio as gr | |
# from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed | |
# from accelerate import infer_auto_device_map as iadm | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | |
model_name = "deepseek-ai/deepseek-math-7b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") | |
model.generation_config = GenerationConfig.from_pretrained(model_name) | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
def evaluate_response(problem): | |
# problem=b'what is angle x if angle y is 60 degree and angle z in 60 degree of a traingle' | |
problem=problem+'\nPlease reason step by step, and put your final answer within \\boxed{}.' | |
messages = [ | |
{"role": "user", "content": problem} | |
] | |
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | |
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) | |
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) | |
# result_output, code_output = process_output(raw_output) | |
return result | |
# def respond( | |
# evaluate_response, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# demo = gr.ChatInterface( | |
# evaluate_response, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
demo = gr.Interface( | |
fn=evaluate_response, | |
inputs=[gr.Textbox(label="Question")], | |
outputs=gr.Textbox(label="Answer"), | |
title="Question and Answer Interface", | |
description="Enter a question." | |
) | |
if __name__ == "__main__": | |
demo.launch() |