Spaces:
Runtime error
Runtime error
import streamlit as st | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from flashrank import Ranker, RerankRequest | |
def get_embeddings(): | |
model_name = "BAAI/bge-large-en-v1.5" | |
model_kwargs = {'device': 'cpu',"trust_remote_code":True} | |
encode_kwargs = {'normalize_embeddings': True} # set True to compute caosine similarity | |
model = HuggingFaceEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs,) | |
return model | |
baai_embeddings = get_embeddings() | |
kadhal_Server = FAISS.from_local("./",baai_embeddings) | |
ranker = Ranker(model_name="ms-marco-MiniLM-L-12-v2", cache_dir="/opt") | |
st.header('kadhalTensor', divider='red') | |
st.header('_Adhalal Kadhal Seiveer_ is :blue[cool] :sunglasses:') | |
st.write("Kadhal Engine on Sangam Literature : by Prabakaran Chandran") | |
with st.form("my_form"): | |
st.write("What do want to know about sangam era's love?") | |
question_input = st.text_input("") | |
# Every form must have a submit button. | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
docs = kadhal_Server.similarity_search(question_input) | |
tobeReranked = [{"text":doc.page_content , "metadata":doc.metadata} for doc in docs] | |
rerankInput = RerankRequest( | |
passages=tobeReranked, | |
query=" take care of our loved ones accorting to thirukkural?",) | |
reranked = ranker.rerank(rerankInput) | |
reranked_top = reranked[0:2] | |
st.write(reranked_top) | |
st.write("Outside the form") | |