Spaces:
Build error
Build error
import gradio as gr | |
from simpletransformers.classification import ClassificationModel, ClassificationArgs | |
from lime.lime_text import LimeTextExplainer | |
import torch | |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler | |
import re | |
import transformers | |
import json | |
# load all models | |
deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,use_multiprocessing=False) | |
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False) | |
pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True) | |
pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True) | |
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True) | |
# Event Listeners | |
with_omp_str = 'Should contain a parallel work-sharing loop construct' | |
without_omp_str = 'Should not contain a parallel work-sharing loop construct' | |
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net'] | |
tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa') | |
with open('c_data.json', 'r') as f: | |
data = json.load(f) | |
def fill_code(code_pth): | |
pragma = data[code_pth]['pragma'] | |
code = data[code_pth]['code'] | |
return 'None' if len(pragma)==0 else pragma, code | |
def predict(code_txt): | |
code = code_txt.lstrip().rstrip() | |
tokenized = tokenizer.batch_encode_plus( | |
[code], | |
max_length = 150, | |
pad_to_max_length = True, | |
truncation = True | |
) | |
pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask'])) | |
y_hat = torch.argmax(pred).item() | |
return with_omp_str if y_hat==1 else without_omp_str, torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item() | |
def is_private(code_txt): | |
if predict(code_txt)[0] == without_omp_str: | |
return gr.update(visible=False) | |
code = code_txt.lstrip().rstrip() | |
tokenized = tokenizer.batch_encode_plus( | |
[code], | |
max_length = 150, | |
pad_to_max_length = True, | |
truncation = True | |
) | |
pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask'])) | |
y_hat = torch.argmax(pred).item() | |
# if y_hat == 0: | |
# return gr.update(visible=False) | |
# else: | |
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain private with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True) | |
def is_reduction(code_txt): | |
if predict(code_txt)[0] == without_omp_str: | |
return gr.update(visible=False) | |
code = code_txt.lstrip().rstrip() | |
tokenized = tokenizer.batch_encode_plus( | |
[code], | |
max_length = 150, | |
pad_to_max_length = True, | |
truncation = True | |
) | |
pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask'])) | |
y_hat = torch.argmax(pred).item() | |
# if y_hat == 0: | |
# return gr.update(visible=False) | |
# else: | |
return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True) | |
def get_predictor(model): | |
def predictor(texts): | |
tokenized = tokenizer.batch_encode_plus( | |
texts, | |
max_length = 150, | |
pad_to_max_length = True, | |
truncation = True | |
) | |
test_seq = torch.tensor(tokenized['input_ids']) | |
test_mask = torch.tensor(tokenized['attention_mask']) | |
test_y = torch.tensor([1]*len(texts)) | |
test_data = TensorDataset(test_seq, test_mask, test_y) | |
test_sampler = SequentialSampler(test_seq) | |
test_dataloader = DataLoader(test_data, sampler = test_sampler, batch_size = len(texts)) | |
total_probas = [] | |
for step, batch in enumerate(test_dataloader): | |
sent_id, mask, labels = batch | |
outputs = model(sent_id, mask) | |
probas = outputs.detach().numpy() | |
total_probas.extend(probas) | |
return torch.nn.Softmax(dim=1)(torch.tensor(probas)).numpy() | |
return predictor | |
def get_lime_explain(filename): | |
def lime_explain(code_txt): | |
SAMPLES = 20 | |
exp = [] | |
if filename == 'Loop': | |
model = pragformer | |
class_names = ['Without OpenMP', 'With OpenMP'] | |
elif filename == 'Private': | |
model = pragformer_private | |
class_names = ['Without Private', 'With Private'] | |
else: | |
model = pragformer_reduction | |
class_names = ['Without Reduction', 'With Reduction'] | |
explainer = LimeTextExplainer(class_names=class_names, split_expression=r"\s+") | |
exp = explainer.explain_instance(code_txt, get_predictor(model), num_features=20, num_samples=SAMPLES) | |
exp.save_to_file(f'{filename.lower()}_explanation.html') | |
return gr.update(visible=True, value=f'{filename.lower()}_explanation.html') | |
return lime_explain | |
def lime_title(code_txt): | |
return gr.update(visible=True) | |
def activate_c(lang_pred): | |
langs = lang_pred.split('\n') | |
langs = {lang[5:lang.find(':')]:float(lang[lang.find(':')+1:]) for lang in langs} | |
if any([lang in langs for lang in ['c', 'c++', 'c#']]) and any([val > 0.15 for val in langs.values()]): | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def activate_button(lang_pred): | |
langs = lang_pred.split('\n') | |
langs = {lang[5:lang.find(':')]:float(lang[lang.find(':')+1:]) for lang in langs} | |
if any([lang in langs for lang in ['c', 'c++', 'c#']]) and any([val > 0.15 for val in langs.values()]): | |
return gr.update(visible=False) | |
else: | |
return gr.update(visible=True) | |
def lang_predict(code_txt): | |
res = {} | |
code = code_txt.replace('\n',' ').replace('\r',' ') | |
predictions, raw_outputs = deep_scc_model.predict([code]) | |
# preds = [name_file[predictions[i]] for i in range(5)] | |
softmax_vals = torch.nn.Softmax(dim=1)(torch.tensor(raw_outputs)) | |
top5 = torch.topk(softmax_vals, 5) | |
for lang_idx, conf in zip(top5.indices.flatten(), top5.values.flatten()): | |
res[name_file[lang_idx.item()]] = conf.item() | |
return '\n'.join([f" {'✅' if k=='c' else '❌'} {k}: {v}" for k,v in res.items()]) | |
# Define GUI | |
with gr.Blocks() as pragformer_gui: | |
gr.Markdown( | |
""" | |
# PragFormer Pragma Classifiction | |
Pragformer is a tool that analyzes C code to determine whether it would benefit from being placed in a work-sharing loop construct and, if necessary, suggests | |
the use of data-sharing attribute clauses (e.g. private and reduction) to improve performance. It also provides explainability through the use of LIME. | |
""") | |
#with gr.Row(equal_height=True): | |
with gr.Column(): | |
gr.Markdown("## Input") | |
with gr.Row(): | |
with gr.Column(): | |
drop = gr.Dropdown(list(data.keys()), label="Mix of parallel and not-parallel code snippets", value="Minyoung-Kim1110/OpenMP/Excercise/atomic/0") | |
sample_btn = gr.Button("Sample") | |
pragma = gr.Textbox(label="Original parallelization classification (if any)") | |
with gr.Row(): | |
code_in = gr.Textbox(lines=5, label="Write some C code and see if it should contain a parallel work-sharing loop construct") | |
lang_pred = gr.Textbox(lines=5, label="DeepScc programming language prediction (only codes written in a C-like syntax will be executed)") | |
submit_btn = gr.Button("Submit") | |
err_msg = gr.Markdown(""" | |
<div style='text-align: center;''> | |
<span style='color:red'>According to the DeepSCC prediction, the code language is not of a C-like syntax</span> | |
</div>""", visible=False) | |
with gr.Column(): | |
gr.Markdown("## Results") | |
with gr.Row(): | |
label_out = gr.Textbox(label="Label") | |
confidence_out = gr.Textbox(label="Confidence") | |
with gr.Row(): | |
private = gr.Textbox(label="Data-sharing attribute clause- private", visible=False) | |
reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False) | |
explain_title = gr.Markdown("## LIME Explainability", visible=False) | |
loop_explanation = gr.File(label='Work-sharing loop construct prediction explanation', interactive=False, visible=False) | |
private_explanation = gr.File(label='Data-sharing attribute private prediction explanation', interactive=False, visible=False) | |
reduction_explanation = gr.File(label='Data-sharing attribute reduction prediction explanation', interactive=False, visible=False) | |
code_in.change(fn=lang_predict, inputs=code_in, outputs=[lang_pred]) | |
lang_pred.change(fn=activate_c, inputs=lang_pred, outputs=submit_btn) | |
lang_pred.change(fn=activate_button, inputs=lang_pred, outputs=err_msg) | |
submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out]) | |
submit_btn.click(fn=is_private, inputs=code_in, outputs=private) | |
submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction) | |
submit_btn.click(fn=lime_title, inputs=code_in, outputs=explain_title) | |
submit_btn.click(fn=get_lime_explain('Loop'), inputs=code_in, outputs=loop_explanation) | |
submit_btn.click(fn=get_lime_explain('Private'), inputs=code_in, outputs=private_explanation) | |
submit_btn.click(fn=get_lime_explain('Reduction'), inputs=code_in, outputs=reduction_explanation) | |
sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in]) | |
gr.Markdown( | |
""" | |
## How it Works? | |
To use the PragFormer tool, you will need to input a C language for-loop. You can either write your own code or use the samples | |
provided in the dropdown menu, which have been gathered from GitHub. Once you submit the code, the PragFormer model will analyze | |
it and predict whether the for-loop should be parallelized using OpenMP. If the PragFormer model determines that parallelization | |
is necessary, two additional models will be used to determine if adding specific data-sharing attributes, such as ***private*** or ***reduction*** clauses, is needed. | |
***private***- Specifies that each thread should have its own instance of a variable. | |
***reduction***- Specifies that one or more variables that are private to each thread are the subject of a reduction operation at | |
the end of the parallel region. | |
## Description | |
In past years, the world has switched to many-core and multi-core shared memory architectures. | |
As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications. | |
OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface. | |
Nevertheless, introducing OpenMP into code, especially legacy code, is challenging due to pervasive pitfalls in management of parallel shared memory. | |
To facilitate the performance of this task, many source-to-source (S2S) compilers have been created over the years, tasked with inserting OpenMP directives into | |
code automatically. | |
In addition to having limited robustness to their input format, these compilers still do not achieve satisfactory coverage and precision in locating parallelizable | |
code and generating appropriate directives. | |
In this work, we propose leveraging recent advances in machine learning techniques, specifically in natural language processing (NLP), to replace S2S compilers altogether. | |
We create a database (corpus), OpenMP-OMP specifically for this goal. | |
OpenMP-OMP contains over 28,000 code snippets, half of which contain OpenMP directives while the other half do not need parallelization at all with high probability. | |
We use the corpus to train systems to automatically classify code segments in need of parallelization, as well as suggest individual OpenMP clauses. | |
We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization | |
compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses. | |
![](https://user-images.githubusercontent.com/48416212/211221896-b4f50ec7-7d6e-47eb-b418-903cf9b31060.png) | |
""") | |
# launch gui | |
pragformer_gui.launch() | |