Prakhar618 commited on
Commit
a3f57dc
1 Parent(s): f897ab0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -8,6 +8,10 @@ from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,
8
  model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
9
  tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
10
 
 
 
 
 
11
  def predict(text):
12
  # Convert test dataframe to Hugging Face dataset
13
  test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
@@ -18,10 +22,10 @@ def predict(text):
18
  y_pred = np.argmax(predictions, axis=1)
19
  return y_pred
20
 
 
 
 
21
 
22
- def tokenize_function(examples):
23
- return tokenizer(examples['text'], padding=True, truncation=True,
24
- max_length=256)
25
 
26
  test_args = TrainingArguments(
27
  do_train=False,
@@ -34,5 +38,5 @@ trainer = Trainer(
34
  args=test_args,
35
  )
36
 
37
- iface = gr.Interface(fn=predict, inputs="text", outputs="text")
38
- iface.launch()
 
8
  model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
9
  tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
10
 
11
+ def tokenize_function(examples):
12
+ return tokenizer(examples['text'], padding=True, truncation=True,
13
+ max_length=256)
14
+
15
  def predict(text):
16
  # Convert test dataframe to Hugging Face dataset
17
  test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
 
22
  y_pred = np.argmax(predictions, axis=1)
23
  return y_pred
24
 
25
+ # Create Gradio interface
26
+ text_input = gr.Textbox(lines=7, label="Input Text", placeholder="Enter your text here...")
27
+ output_text = gr.Textbox(label="Predicted Sentiment")
28
 
 
 
 
29
 
30
  test_args = TrainingArguments(
31
  do_train=False,
 
38
  args=test_args,
39
  )
40
 
41
+ iface = gr.Interface(fn=predict, inputs=text_input, outputs=output_text)
42
+ iface.launch(share=True)