Spaces:
Runtime error
Runtime error
Prakhar618
commited on
Commit
•
a3f57dc
1
Parent(s):
f897ab0
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,10 @@ from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,
|
|
8 |
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
|
9 |
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
|
10 |
|
|
|
|
|
|
|
|
|
11 |
def predict(text):
|
12 |
# Convert test dataframe to Hugging Face dataset
|
13 |
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
|
@@ -18,10 +22,10 @@ def predict(text):
|
|
18 |
y_pred = np.argmax(predictions, axis=1)
|
19 |
return y_pred
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
-
def tokenize_function(examples):
|
23 |
-
return tokenizer(examples['text'], padding=True, truncation=True,
|
24 |
-
max_length=256)
|
25 |
|
26 |
test_args = TrainingArguments(
|
27 |
do_train=False,
|
@@ -34,5 +38,5 @@ trainer = Trainer(
|
|
34 |
args=test_args,
|
35 |
)
|
36 |
|
37 |
-
iface = gr.Interface(fn=predict, inputs=
|
38 |
-
iface.launch()
|
|
|
8 |
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
|
9 |
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
|
10 |
|
11 |
+
def tokenize_function(examples):
|
12 |
+
return tokenizer(examples['text'], padding=True, truncation=True,
|
13 |
+
max_length=256)
|
14 |
+
|
15 |
def predict(text):
|
16 |
# Convert test dataframe to Hugging Face dataset
|
17 |
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
|
|
|
22 |
y_pred = np.argmax(predictions, axis=1)
|
23 |
return y_pred
|
24 |
|
25 |
+
# Create Gradio interface
|
26 |
+
text_input = gr.Textbox(lines=7, label="Input Text", placeholder="Enter your text here...")
|
27 |
+
output_text = gr.Textbox(label="Predicted Sentiment")
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
test_args = TrainingArguments(
|
31 |
do_train=False,
|
|
|
38 |
args=test_args,
|
39 |
)
|
40 |
|
41 |
+
iface = gr.Interface(fn=predict, inputs=text_input, outputs=output_text)
|
42 |
+
iface.launch(share=True)
|