Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import openai # Import if you are using OpenAI's API | |
import random | |
from datetime import datetime | |
# Initialize sentiment analysis pipeline | |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
class JournalCompanion: | |
def __init__(self): | |
self.entries = [] | |
def analyze_entry(self, entry_text): | |
if not entry_text.strip(): | |
return ("Please write something in your journal entry.", "", "", "") | |
try: | |
# Perform sentiment analysis | |
sentiment_result = sentiment_analyzer(entry_text)[0] | |
sentiment = sentiment_result["label"].upper() | |
sentiment_score = sentiment_result["score"] | |
except Exception as e: | |
print("Error during sentiment analysis:", e) | |
return ( | |
"An error occurred during analysis. Please try again.", | |
"Error", | |
"Could not generate prompts due to an error.", | |
"Could not generate affirmation due to an error." | |
) | |
entry_data = { | |
"text": entry_text, | |
"timestamp": datetime.now().isoformat(), | |
"sentiment": sentiment, | |
"sentiment_score": sentiment_score | |
} | |
self.entries.append(entry_data) | |
# Generate dynamic responses using a language model | |
prompts = self.generate_dynamic_prompts(sentiment) | |
affirmation = self.generate_dynamic_affirmation(sentiment) | |
sentiment_percentage = f"{sentiment_score * 100:.1f}%" | |
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)" | |
return message, sentiment, prompts, affirmation | |
def generate_dynamic_prompts(self, sentiment): | |
prompt_request = f"Generate three reflective journal prompts for a person feeling {sentiment.lower()}." | |
try: | |
response = openai.Completion.create( | |
engine="gpt-3.5-turbo", | |
prompt=prompt_request, | |
max_tokens=60, | |
n=1 | |
) | |
prompts = response.choices[0].text.strip() | |
except Exception as e: | |
print("Error generating prompts:", e) | |
prompts = "Could not generate prompts at this time." | |
return prompts | |
def generate_dynamic_affirmation(self, sentiment): | |
affirmation_request = f"Generate an affirmation for someone who is feeling {sentiment.lower()}." | |
try: | |
response = openai.Completion.create( | |
engine="gpt-3.5-turbo", | |
prompt=affirmation_request, | |
max_tokens=20, | |
n=1 | |
) | |
affirmation = response.choices[0].text.strip() | |
except Exception as e: | |
print("Error generating affirmation:", e) | |
affirmation = "Could not generate an affirmation at this time." | |
return affirmation | |
def get_monthly_insights(self): | |
if not self.entries: | |
return "No entries yet to analyze." | |
total_entries = len(self.entries) | |
positive_entries = sum(1 for entry in self.entries if entry["sentiment"] == "POSITIVE") | |
insights = f"""Monthly Insights: | |
Total Entries: {total_entries} | |
Positive Entries: {positive_entries} ({(positive_entries / total_entries * 100):.1f}%) | |
Negative Entries: {total_entries - positive_entries} ({((total_entries - positive_entries) / total_entries * 100):.1f}%) | |
""" | |
return insights | |
def create_journal_interface(): | |
journal = JournalCompanion() | |
with gr.Blocks(title="AI Journal Companion") as interface: | |
gr.Markdown("# π AI Journal Companion") | |
gr.Markdown("Write your thoughts and receive AI-powered insights, prompts, and affirmations.") | |
with gr.Row(): | |
with gr.Column(): | |
entry_input = gr.Textbox( | |
label="Journal Entry", | |
placeholder="Write your journal entry here...", | |
lines=5 | |
) | |
submit_btn = gr.Button("Submit Entry", variant="primary") | |
with gr.Column(): | |
result_message = gr.Markdown(label="Analysis Result") | |
sentiment_output = gr.Textbox(label="Detected Sentiment") | |
prompt_output = gr.Markdown(label="Reflective Prompts") | |
affirmation_output = gr.Textbox(label="Daily Affirmation") | |
with gr.Row(): | |
insights_btn = gr.Button("Show Monthly Insights") | |
insights_output = gr.Markdown(label="Monthly Insights") | |
submit_btn.click( | |
fn=journal.analyze_entry, | |
inputs=[entry_input], | |
outputs=[ | |
result_message, | |
sentiment_output, | |
prompt_output, | |
affirmation_output | |
] | |
) | |
insights_btn.click( | |
fn=journal.get_monthly_insights, | |
inputs=[], | |
outputs=[insights_output] | |
) | |
return interface | |
if __name__ == "__main__": | |
interface = create_journal_interface() | |
interface.launch() | |