Spaces:
Running
Running
Pranav0111
commited on
Commit
•
bf1fafe
1
Parent(s):
1065445
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
# Initialize models
|
7 |
-
sentiment_analyzer = pipeline(
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
text_generator = pipeline(
|
12 |
-
"text-generation",
|
13 |
-
model=model,
|
14 |
-
tokenizer=tokenizer,
|
15 |
-
max_new_tokens=50,
|
16 |
-
temperature=0.7,
|
17 |
-
top_p=0.9,
|
18 |
-
pad_token_id=tokenizer.eos_token_id
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class JournalCompanion:
|
22 |
def __init__(self):
|
23 |
self.entries = []
|
24 |
|
25 |
-
def
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
try:
|
30 |
-
response = text_generator(prompt_template)[0]['generated_text']
|
31 |
-
# Extract the generated prompts after the input prompt
|
32 |
-
prompts = response[len(prompt_template):]
|
33 |
-
return "\n\nReflective Prompts:" + prompts
|
34 |
-
except Exception as e:
|
35 |
-
print("Error generating prompts:", e)
|
36 |
-
return "\n\nReflective Prompts:\n- What thoughts and feelings are you experiencing right now?\n- How has this experience affected you?\n- What would be helpful for you at this moment?"
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
try:
|
42 |
-
response = text_generator(affirmation_template)[0]['generated_text']
|
43 |
-
# Extract the generated affirmation after the input prompt
|
44 |
-
affirmation = response[len(affirmation_template):].strip()
|
45 |
-
return affirmation
|
46 |
-
except Exception as e:
|
47 |
-
print("Error generating affirmation:", e)
|
48 |
-
return "I acknowledge my feelings and trust in my ability to handle this moment."
|
49 |
|
50 |
def analyze_entry(self, entry_text):
|
51 |
if not entry_text.strip():
|
@@ -73,9 +75,9 @@ class JournalCompanion:
|
|
73 |
}
|
74 |
self.entries.append(entry_data)
|
75 |
|
76 |
-
#
|
77 |
-
prompts = self.
|
78 |
-
affirmation = self.
|
79 |
sentiment_percentage = f"{sentiment_score * 100:.1f}%"
|
80 |
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
|
81 |
|
@@ -101,6 +103,8 @@ class JournalCompanion:
|
|
101 |
except ZeroDivisionError:
|
102 |
return "No entries available for analysis."
|
103 |
|
|
|
|
|
104 |
def create_journal_interface():
|
105 |
journal = JournalCompanion()
|
106 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import random
|
4 |
from datetime import datetime
|
5 |
|
6 |
+
# Initialize models with smaller, faster alternatives
|
7 |
+
sentiment_analyzer = pipeline(
|
8 |
+
"sentiment-analysis",
|
9 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
10 |
+
device=-1 # Force CPU usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
|
13 |
+
# Pre-defined prompts and affirmations for different sentiments
|
14 |
+
PROMPT_TEMPLATES = {
|
15 |
+
"POSITIVE": [
|
16 |
+
"- What made this positive experience particularly meaningful to you?",
|
17 |
+
"- How can you carry this positive energy forward?",
|
18 |
+
"- Who would you like to share this joy with and why?"
|
19 |
+
],
|
20 |
+
"NEGATIVE": [
|
21 |
+
"- What can you learn from this challenging situation?",
|
22 |
+
"- What small step could you take to feel better?",
|
23 |
+
"- Who or what helps you feel supported during difficult times?"
|
24 |
+
]
|
25 |
+
}
|
26 |
+
|
27 |
+
AFFIRMATIONS = {
|
28 |
+
"POSITIVE": [
|
29 |
+
"I deserve this joy and all good things coming my way.",
|
30 |
+
"My positive energy creates positive experiences.",
|
31 |
+
"I choose to embrace and celebrate this moment."
|
32 |
+
],
|
33 |
+
"NEGATIVE": [
|
34 |
+
"This too shall pass, and I am growing stronger.",
|
35 |
+
"I trust in my ability to handle challenging situations.",
|
36 |
+
"Every experience is teaching me something valuable."
|
37 |
+
]
|
38 |
+
}
|
39 |
+
|
40 |
class JournalCompanion:
|
41 |
def __init__(self):
|
42 |
self.entries = []
|
43 |
|
44 |
+
def get_prompts(self, sentiment):
|
45 |
+
prompts = PROMPT_TEMPLATES.get(sentiment, PROMPT_TEMPLATES["POSITIVE"])
|
46 |
+
return "\n\nReflective Prompts:\n" + "\n".join(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def get_affirmation(self, sentiment):
|
49 |
+
affirmations = AFFIRMATIONS.get(sentiment, AFFIRMATIONS["POSITIVE"])
|
50 |
+
return random.choice(affirmations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def analyze_entry(self, entry_text):
|
53 |
if not entry_text.strip():
|
|
|
75 |
}
|
76 |
self.entries.append(entry_data)
|
77 |
|
78 |
+
# Get pre-defined responses
|
79 |
+
prompts = self.get_prompts(sentiment)
|
80 |
+
affirmation = self.get_affirmation(sentiment)
|
81 |
sentiment_percentage = f"{sentiment_score * 100:.1f}%"
|
82 |
message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
|
83 |
|
|
|
103 |
except ZeroDivisionError:
|
104 |
return "No entries available for analysis."
|
105 |
|
106 |
+
# Rest of the code (create_journal_interface function and CSS) remains the samepad_token_id=tokenizer.eos_token_id
|
107 |
+
)
|
108 |
def create_journal_interface():
|
109 |
journal = JournalCompanion()
|
110 |
|