File size: 6,508 Bytes
b86f76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
 * Copyright (c) 2016 William Ma, Sofia Kim, Dustin Woo
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Optimal Huffman Encoding tests.
 */

#include "libavcodec/avcodec.h"
#include <stdlib.h>
#include "libavcodec/mjpegenc.h"
#include "libavcodec/mjpegenc_huffman.h"
#include "libavcodec/mjpegenc_common.h"
#include "libavcodec/mpegvideo.h"

// Validate the computed lengths satisfy the JPEG restrictions and is optimal.
static int check_lengths(int L, int expected_length,
                         const int *probs, int nprobs)
{
    HuffTable lengths[256];
    PTable val_counts[256];
    int actual_length = 0, i, j, k, prob, length;
    int ret = 0;
    double cantor_measure = 0;
    av_assert0(nprobs <= 256);

    for (i = 0; i < nprobs; i++) {
        val_counts[i] = (PTable){.value = i, .prob = probs[i]};
    }

    ff_mjpegenc_huffman_compute_bits(val_counts, lengths, nprobs, L);

    for (i = 0; i < nprobs; i++) {
        // Find the value's prob and length
        for (j = 0; j < nprobs; j++)
            if (val_counts[j].value == i) break;
        for (k = 0; k < nprobs; k++)
            if (lengths[k].code == i) break;
        if (!(j < nprobs && k < nprobs)) return 1;
        prob = val_counts[j].prob;
        length = lengths[k].length;

        if (prob) {
            actual_length += prob * length;
            cantor_measure += 1. / (1 << length);
        }

        if (length > L || length < 1) return 1;
    }
    // Check that the codes can be prefix-free.
    if (cantor_measure > 1) ret = 1;
    // Check that the total length is optimal
    if (actual_length != expected_length) ret = 1;

    if (ret == 1) {
      fprintf(stderr,
              "Cantor measure: %f\n"
              "Actual length: %d\n"
              "Expected length: %d\n",
              cantor_measure, actual_length, expected_length);
    }

    return ret;
}

static const int probs_zeroes[] = {
    6, 6, 0, 0, 0
};

static const int probs_skewed[] = {
    2, 0, 0, 0, 0, 1, 0, 0, 20, 0, 2, 0, 10, 5, 1, 1, 9, 1, 1, 6, 0, 5, 0, 1, 0, 7, 6,
    1, 1, 5, 0, 0, 0, 0, 11, 0, 0, 0, 51, 1, 0, 20, 0, 1, 0, 0, 0, 0, 6, 106, 1, 0, 1,
    0, 2, 1, 16, 0, 0, 5, 0, 0, 0, 4, 3, 15, 4, 4, 0, 0, 0, 3, 0, 0, 1, 0, 3, 0, 3, 2,
    2, 0, 0, 4, 3, 40, 1, 2, 0, 22, 0, 0, 0, 9, 0, 0, 0, 0, 1, 1, 0, 1, 6, 11, 4, 10,
    28, 6, 1, 0, 0, 9, 9, 4, 0, 0, 0, 0, 8, 33844, 2, 0, 2, 1, 1, 5, 0, 0, 1, 9, 1, 0,
    4, 14, 4, 0, 0, 3, 8, 0, 51, 9, 6, 1, 1, 2, 2, 3, 1, 5, 5, 29, 0, 0, 0, 0, 14, 29,
    6, 4, 13, 12, 2, 3, 1, 0, 5, 4, 1, 1, 0, 0, 29, 1, 0, 0, 0, 0, 4, 0, 0, 1, 0, 1,
    7, 0, 42, 0, 0, 0, 0, 0, 2, 0, 3, 9, 0, 0, 0, 2, 1, 0, 0, 6, 5, 6, 1, 2, 3, 0, 0,
    0, 3, 0, 0, 28, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 23, 0, 0, 0, 0,
    0, 21, 1, 0, 3, 24, 2, 0, 0, 7, 0, 0, 1, 5, 1, 2, 0, 5
};

static const int probs_sat[] = {
    74, 8, 14, 7, 9345, 40, 0, 2014, 2, 1, 115, 0, 2, 1, 194, 388, 20, 0, 0, 2, 1, 121,
    1, 1583, 0, 16, 21, 2, 132, 2, 15, 9, 13, 1, 0, 2293, 2, 8, 5, 2, 30, 0, 0, 4, 54,
    783, 4, 1, 2, 4, 0, 22, 93, 1, 143, 19, 0, 36, 32, 4, 6, 33, 3, 45, 0, 8, 1, 0, 18,
    17, 1, 0, 1, 0, 0, 1, 1004, 38, 3, 8, 90, 23, 0, 2819, 3, 0, 970, 158, 9, 6, 4, 48,
    4, 0, 1, 0, 0, 60, 3, 62, 0, 2, 2, 2, 279, 66, 16, 1, 20, 0, 7, 9, 32, 1411, 6, 3,
    27, 1, 5, 49, 0, 0, 0, 0, 0, 2, 10, 1, 1, 2, 3, 801, 3, 25, 5, 1, 1, 0, 632, 0, 14,
    18, 5, 8, 200, 4, 4, 22, 12, 0, 4, 1, 0, 2, 4, 9, 3, 16, 7, 2, 2, 213, 0, 2, 620,
    39303, 0, 1, 0, 2, 1, 183781, 1, 0, 0, 0, 94, 7, 3, 4, 0, 4, 306, 43, 352, 76, 34,
    13, 11, 0, 51, 1, 13, 19, 0, 26, 0, 7276, 4, 207, 31, 1, 2, 4, 6, 19, 8, 17, 4, 6,
    0, 1085, 0, 0, 0, 3, 489, 36, 1, 0, 1, 9420, 294, 28, 0, 57, 5, 0, 9, 2, 0, 1, 2,
    2, 0, 0, 9, 2, 29, 2, 2, 7, 0, 5, 490, 0, 7, 5, 0, 1, 8, 0, 0, 23255, 0, 1
};

// Test the example given on @see
// http://guru.multimedia.cx/small-tasks-for-ffmpeg/
int main(int argc, char **argv)
{
    int i, ret = 0;
    // Probabilities of symbols 0..4
    PTable val_counts[] = {
        {.value = 0, .prob = 1},
        {.value = 1, .prob = 2},
        {.value = 2, .prob = 5},
        {.value = 3, .prob = 10},
        {.value = 4, .prob = 21},
    };
    // Expected code lengths for each symbol
    static const HuffTable expected[] = {
        {.code = 0, .length = 3},
        {.code = 1, .length = 3},
        {.code = 2, .length = 3},
        {.code = 3, .length = 3},
        {.code = 4, .length = 1},
    };
    // Actual code lengths
    HuffTable distincts[5];

    // Build optimal huffman tree using an internal function, to allow for
    // smaller-than-normal test cases. This mutates val_counts by sorting.
    ff_mjpegenc_huffman_compute_bits(val_counts, distincts,
                                     FF_ARRAY_ELEMS(distincts), 3);

    for (i = 0; i < FF_ARRAY_ELEMS(distincts); i++) {
        if (distincts[i].code != expected[i].code ||
            distincts[i].length != expected[i].length) {
            fprintf(stderr,
                    "Built huffman does not equal expectations. "
                    "Expected: code %d probability %d, "
                    "Actual: code %d probability %d\n",
                    expected[i].code, expected[i].length,
                    distincts[i].code, distincts[i].length);
            ret = 1;
        }
    }

    // Check handling of zero probabilities
    if (check_lengths(16, 18, probs_zeroes, FF_ARRAY_ELEMS(probs_zeroes)))
        ret = 1;
    // Check skewed distribution over 256 without saturated lengths
    if (check_lengths(16, 41282, probs_skewed, FF_ARRAY_ELEMS(probs_skewed)))
        ret = 1;
    // Check skewed distribution over 256 with saturated lengths
    if (check_lengths(16, 669904, probs_sat, FF_ARRAY_ELEMS(probs_sat)))
        ret = 1;

    return ret;
}