File size: 17,128 Bytes
b86f76f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/*
 * Copyright (c) 2022 Ben Avison
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <string.h>

#include "checkasm.h"

#include "libavcodec/vc1dsp.h"

#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"

#define VC1DSP_TEST(func) { #func, offsetof(VC1DSPContext, func) },
#define VC1DSP_SIZED_TEST(func, width, height) { #func, offsetof(VC1DSPContext, func), width, height },

typedef struct {
    const char *name;
    size_t offset;
    int width;
    int height;
} test;

typedef struct matrix {
    size_t width;
    size_t height;
    float d[];
} matrix;

static const matrix T8 = { 8, 8, {
        12,  12,  12,  12,  12,  12,  12,  12,
        16,  15,   9,   4,  -4,  -9, -15, -16,
        16,   6,  -6, -16, -16,  -6,   6,  16,
        15,  -4, -16,  -9,   9,  16,   4, -15,
        12, -12, -12,  12,  12, -12, -12,  12,
         9, -16,   4,  15, -15,  -4,  16,  -9,
         6, -16,  16,  -6,  -6,  16, -16,   6,
         4,  -9,  15, -16,  16, -15,   9,  -4
} };

static const matrix T4 = { 4, 4, {
        17,  17,  17,  17,
        22,  10, -10, -22,
        17, -17, -17,  17,
        10, -22,  22, -10
} };

static const matrix T8t = { 8, 8, {
        12,  16,  16,  15,  12,   9,   6,   4,
        12,  15,   6,  -4, -12, -16, -16,  -9,
        12,   9,  -6, -16, -12,   4,  16,  15,
        12,   4, -16,  -9,  12,  15,  -6, -16,
        12,  -4, -16,   9,  12, -15,  -6,  16,
        12,  -9,  -6,  16, -12,  -4,  16, -15,
        12, -15,   6,   4, -12,  16, -16,   9,
        12, -16,  16, -15,  12,  -9,   6,  -4
} };

static const matrix T4t = { 4, 4, {
        17,  22,  17,  10,
        17,  10, -17, -22,
        17, -10, -17,  22,
        17, -22,  17, -10
} };

static matrix *new_matrix(size_t width, size_t height)
{
    matrix *out = av_mallocz(sizeof (matrix) + height * width * sizeof (float));
    if (out == NULL) {
        fprintf(stderr, "Memory allocation failure\n");
        exit(EXIT_FAILURE);
    }
    out->width = width;
    out->height = height;
    return out;
}

static matrix *multiply(const matrix *a, const matrix *b)
{
    matrix *out;
    if (a->width != b->height) {
        fprintf(stderr, "Incompatible multiplication\n");
        exit(EXIT_FAILURE);
    }
    out = new_matrix(b->width, a->height);
    for (int j = 0; j < out->height; ++j)
        for (int i = 0; i < out->width; ++i) {
            float sum = 0;
            for (int k = 0; k < a->width; ++k)
                sum += a->d[j * a->width + k] * b->d[k * b->width + i];
            out->d[j * out->width + i] = sum;
        }
    return out;
}

static void normalise(matrix *a)
{
    for (int j = 0; j < a->height; ++j)
        for (int i = 0; i < a->width; ++i) {
            float *p = a->d + j * a->width + i;
            *p *= 64;
            if (a->height == 4)
                *p /= (const unsigned[]) { 289, 292, 289, 292 } [j];
            else
                *p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [j];
            if (a->width == 4)
                *p /= (const unsigned[]) { 289, 292, 289, 292 } [i];
            else
                *p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [i];
        }
}

static void divide_and_round_nearest(matrix *a, float by)
{
    for (int j = 0; j < a->height; ++j)
        for (int i = 0; i < a->width; ++i) {
            float *p = a->d + j * a->width + i;
            *p = rintf(*p / by);
        }
}

static void tweak(matrix *a)
{
    for (int j = 4; j < a->height; ++j)
        for (int i = 0; i < a->width; ++i) {
            float *p = a->d + j * a->width + i;
            *p += 1;
        }
}

/* The VC-1 spec places restrictions on the values permitted at three
 * different stages:
 * - D: the input coefficients in frequency domain
 * - E: the intermediate coefficients, inverse-transformed only horizontally
 * - R: the fully inverse-transformed coefficients
 *
 * To fully cater for the ranges specified requires various intermediate
 * values to be held to 17-bit precision; yet these conditions do not appear
 * to be utilised in real-world streams. At least some assembly
 * implementations have chosen to restrict these values to 16-bit precision,
 * to accelerate the decoding of real-world streams at the cost of strict
 * adherence to the spec. To avoid our test marking these as failures,
 * reduce our random inputs.
 */
#define ATTENUATION 4

static matrix *generate_inverse_quantized_transform_coefficients(size_t width, size_t height)
{
    matrix *raw, *tmp, *D, *E, *R;
    raw = new_matrix(width, height);
    for (int i = 0; i < width * height; ++i)
        raw->d[i] = (int) (rnd() % (1024/ATTENUATION)) - 512/ATTENUATION;
    tmp = multiply(height == 8 ? &T8 : &T4, raw);
    D = multiply(tmp, width == 8 ? &T8t : &T4t);
    normalise(D);
    divide_and_round_nearest(D, 1);
    for (int i = 0; i < width * height; ++i) {
        if (D->d[i] < -2048/ATTENUATION || D->d[i] > 2048/ATTENUATION-1) {
            /* Rare, so simply try again */
            av_free(raw);
            av_free(tmp);
            av_free(D);
            return generate_inverse_quantized_transform_coefficients(width, height);
        }
    }
    E = multiply(D, width == 8 ? &T8 : &T4);
    divide_and_round_nearest(E, 8);
    for (int i = 0; i < width * height; ++i)
        if (E->d[i] < -4096/ATTENUATION || E->d[i] > 4096/ATTENUATION-1) {
            /* Rare, so simply try again */
            av_free(raw);
            av_free(tmp);
            av_free(D);
            av_free(E);
            return generate_inverse_quantized_transform_coefficients(width, height);
        }
    R = multiply(height == 8 ? &T8t : &T4t, E);
    tweak(R);
    divide_and_round_nearest(R, 128);
    for (int i = 0; i < width * height; ++i)
        if (R->d[i] < -512/ATTENUATION || R->d[i] > 512/ATTENUATION-1) {
            /* Rare, so simply try again */
            av_free(raw);
            av_free(tmp);
            av_free(D);
            av_free(E);
            av_free(R);
            return generate_inverse_quantized_transform_coefficients(width, height);
        }
    av_free(raw);
    av_free(tmp);
    av_free(E);
    av_free(R);
    return D;
}

#define RANDOMIZE_BUFFER16(name, size)        \
    do {                                      \
        int i;                                \
        for (i = 0; i < size; ++i) {          \
            uint16_t r = rnd();               \
            AV_WN16A(name##0 + i, r);         \
            AV_WN16A(name##1 + i, r);         \
        }                                     \
    } while (0)

#define RANDOMIZE_BUFFER8(name, size)         \
    do {                                      \
        int i;                                \
        for (i = 0; i < size; ++i) {          \
            uint8_t r = rnd();                \
            name##0[i] = r;                   \
            name##1[i] = r;                   \
        }                                     \
    } while (0)

#define RANDOMIZE_BUFFER8_MID_WEIGHTED(name, size)  \
    do {                                            \
        uint8_t *p##0 = name##0, *p##1 = name##1;   \
        int i = (size);                             \
        while (i-- > 0) {                           \
            int x = 0x80 | (rnd() & 0x7F);          \
            x >>= rnd() % 9;                        \
            if (rnd() & 1)                          \
                x = -x;                             \
            *p##1++ = *p##0++ = 0x80 + x;           \
        }                                           \
    } while (0)

static void check_inv_trans_inplace(void)
{
    /* Inverse transform input coefficients are stored in a 16-bit buffer
     * with row stride of 8 coefficients irrespective of transform size.
     * vc1_inv_trans_8x8 differs from the others in two ways: coefficients
     * are stored in column-major order, and the outputs are written back
     * to the input buffer, so we oversize it slightly to catch overruns. */
    LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [10 * 8]);
    LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [10 * 8]);

    VC1DSPContext h;

    ff_vc1dsp_init(&h);

    if (check_func(h.vc1_inv_trans_8x8, "vc1dsp.vc1_inv_trans_8x8")) {
        matrix *coeffs;
        declare_func(void, int16_t *);
        RANDOMIZE_BUFFER16(inv_trans_in, 10 * 8);
        coeffs = generate_inverse_quantized_transform_coefficients(8, 8);
        for (int j = 0; j < 8; ++j)
            for (int i = 0; i < 8; ++i) {
                int idx = 8 + i * 8 + j;
                inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * 8 + i];
            }
        call_ref(inv_trans_in0 + 8);
        call_new(inv_trans_in1 + 8);
        if (memcmp(inv_trans_in0,  inv_trans_in1,  10 * 8 * sizeof (int16_t)))
            fail();
        bench_new(inv_trans_in1 + 8);
        av_free(coeffs);
    }
}

static void check_inv_trans_adding(void)
{
    /* Inverse transform input coefficients are stored in a 16-bit buffer
     * with row stride of 8 coefficients irrespective of transform size. */
    LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [8 * 8]);
    LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [8 * 8]);

    /* For all but vc1_inv_trans_8x8, the inverse transform is narrowed and
     * added with saturation to an array of unsigned 8-bit values. Oversize
     * this by 8 samples left and right and one row above and below. */
    LOCAL_ALIGNED_8(uint8_t, inv_trans_out0, [10 * 24]);
    LOCAL_ALIGNED_8(uint8_t, inv_trans_out1, [10 * 24]);

    VC1DSPContext h;

    const test tests[] = {
        VC1DSP_SIZED_TEST(vc1_inv_trans_8x4, 8, 4)
        VC1DSP_SIZED_TEST(vc1_inv_trans_4x8, 4, 8)
        VC1DSP_SIZED_TEST(vc1_inv_trans_4x4, 4, 4)
        VC1DSP_SIZED_TEST(vc1_inv_trans_8x8_dc, 8, 8)
        VC1DSP_SIZED_TEST(vc1_inv_trans_8x4_dc, 8, 4)
        VC1DSP_SIZED_TEST(vc1_inv_trans_4x8_dc, 4, 8)
        VC1DSP_SIZED_TEST(vc1_inv_trans_4x4_dc, 4, 4)
    };

    ff_vc1dsp_init(&h);

    for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
        void (*func)(uint8_t *, ptrdiff_t, int16_t *) = *(void **)((intptr_t) &h + tests[t].offset);
        if (check_func(func, "vc1dsp.%s", tests[t].name)) {
            matrix *coeffs;
            declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int16_t *);
            RANDOMIZE_BUFFER16(inv_trans_in, 8 * 8);
            RANDOMIZE_BUFFER8(inv_trans_out, 10 * 24);
            coeffs = generate_inverse_quantized_transform_coefficients(tests[t].width, tests[t].height);
            for (int j = 0; j < tests[t].height; ++j)
                for (int i = 0; i < tests[t].width; ++i) {
                    int idx = j * 8 + i;
                    inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * tests[t].width + i];
                }
            call_ref(inv_trans_out0 + 24 + 8, 24, inv_trans_in0);
            call_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1);
            if (memcmp(inv_trans_out0, inv_trans_out1, 10 * 24))
                fail();
            bench_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1 + 8);
            av_free(coeffs);
        }
    }
}

static void check_loop_filter(void)
{
    /* Deblocking filter buffers are big enough to hold a 16x16 block,
     * plus 16 columns left and 4 rows above to hold filter inputs
     * (depending on whether v or h neighbouring block edge, oversized
     * horizontally to maintain 16-byte alignment) plus 16 columns and
     * 4 rows below to catch write overflows */
    LOCAL_ALIGNED_16(uint8_t, filter_buf0, [24 * 48]);
    LOCAL_ALIGNED_16(uint8_t, filter_buf1, [24 * 48]);

    VC1DSPContext h;

    const test tests[] = {
        VC1DSP_TEST(vc1_v_loop_filter4)
        VC1DSP_TEST(vc1_h_loop_filter4)
        VC1DSP_TEST(vc1_v_loop_filter8)
        VC1DSP_TEST(vc1_h_loop_filter8)
        VC1DSP_TEST(vc1_v_loop_filter16)
        VC1DSP_TEST(vc1_h_loop_filter16)
    };

    ff_vc1dsp_init(&h);

    for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
        void (*func)(uint8_t *, ptrdiff_t, int) = *(void **)((intptr_t) &h + tests[t].offset);
        declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int);
        if (check_func(func, "vc1dsp.%s", tests[t].name)) {
            for (int count = 1000; count > 0; --count) {
                int pq = rnd() % 31 + 1;
                RANDOMIZE_BUFFER8_MID_WEIGHTED(filter_buf, 24 * 48);
                call_ref(filter_buf0 + 4 * 48 + 16, 48, pq);
                call_new(filter_buf1 + 4 * 48 + 16, 48, pq);
                if (memcmp(filter_buf0, filter_buf1, 24 * 48))
                    fail();
            }
        }
        for (int j = 0; j < 24; ++j)
            for (int i = 0; i < 48; ++i)
                filter_buf1[j * 48 + i] = 0x60 + 0x40 * (i >= 16 && j >= 4);
        if (check_func(func, "vc1dsp.%s_bestcase", tests[t].name))
            bench_new(filter_buf1 + 4 * 48 + 16, 48, 1);
        if (check_func(func, "vc1dsp.%s_worstcase", tests[t].name))
            bench_new(filter_buf1 + 4 * 48 + 16, 48, 31);
    }
}

#define TEST_UNESCAPE                                                                               \
    do {                                                                                            \
        for (int count = 100; count > 0; --count) {                                                 \
            escaped_offset = rnd() & 7;                                                             \
            unescaped_offset = rnd() & 7;                                                           \
            escaped_len = (1u << (rnd() % 8) + 3) - (rnd() & 7);                                    \
            RANDOMIZE_BUFFER8(unescaped, UNESCAPE_BUF_SIZE);                                        \
            len0 = call_ref(escaped0 + escaped_offset, escaped_len, unescaped0 + unescaped_offset); \
            len1 = call_new(escaped1 + escaped_offset, escaped_len, unescaped1 + unescaped_offset); \
            if (len0 != len1 || memcmp(unescaped0, unescaped1, UNESCAPE_BUF_SIZE))                  \
                fail();                                                                             \
        }                                                                                           \
    } while (0)

static void check_unescape(void)
{
    /* This appears to be a typical length of buffer in use */
#define LOG2_UNESCAPE_BUF_SIZE 17
#define UNESCAPE_BUF_SIZE (1u<<LOG2_UNESCAPE_BUF_SIZE)
    LOCAL_ALIGNED_8(uint8_t, escaped0, [UNESCAPE_BUF_SIZE]);
    LOCAL_ALIGNED_8(uint8_t, escaped1, [UNESCAPE_BUF_SIZE]);
    LOCAL_ALIGNED_8(uint8_t, unescaped0, [UNESCAPE_BUF_SIZE]);
    LOCAL_ALIGNED_8(uint8_t, unescaped1, [UNESCAPE_BUF_SIZE]);

    VC1DSPContext h;

    ff_vc1dsp_init(&h);

    if (check_func(h.vc1_unescape_buffer, "vc1dsp.vc1_unescape_buffer")) {
        int len0, len1, escaped_offset, unescaped_offset, escaped_len;
        declare_func(int, const uint8_t *, int, uint8_t *);

        /* Test data which consists of escapes sequences packed as tightly as possible */
        for (int x = 0; x < UNESCAPE_BUF_SIZE; ++x)
            escaped1[x] = escaped0[x] = 3 * (x % 3 == 0);
        TEST_UNESCAPE;

        /* Test random data */
        RANDOMIZE_BUFFER8(escaped, UNESCAPE_BUF_SIZE);
        TEST_UNESCAPE;

        /* Test data with escape sequences at random intervals */
        for (int x = 0; x <= UNESCAPE_BUF_SIZE - 4;) {
            int gap, gap_msb;
            escaped1[x+0] = escaped0[x+0] = 0;
            escaped1[x+1] = escaped0[x+1] = 0;
            escaped1[x+2] = escaped0[x+2] = 3;
            escaped1[x+3] = escaped0[x+3] = rnd() & 3;
            gap_msb = 2u << (rnd() % 8);
            gap = (rnd() &~ -gap_msb) | gap_msb;
            x += gap;
        }
        TEST_UNESCAPE;

        /* Test data which is known to contain no escape sequences */
        memset(escaped0, 0xFF, UNESCAPE_BUF_SIZE);
        memset(escaped1, 0xFF, UNESCAPE_BUF_SIZE);
        TEST_UNESCAPE;

        /* Benchmark the no-escape-sequences case */
        bench_new(escaped1, UNESCAPE_BUF_SIZE, unescaped1);
    }
}

void checkasm_check_vc1dsp(void)
{
    check_inv_trans_inplace();
    check_inv_trans_adding();
    report("inv_trans");

    check_loop_filter();
    report("loop_filter");

    check_unescape();
    report("unescape_buffer");
}