Spaces:
Runtime error
Runtime error
# # #uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
# # # from fastapi import FastAPI | |
# # # from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# # # import librosa | |
# # # import uvicorn | |
# # # app = FastAPI() | |
# # # processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
# # # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
# # # model.config.forced_decoder_ids = None | |
# # # audio_file_path = "output.mp3" | |
# # # audio_data, _ = librosa.load(audio_file_path, sr=16000) | |
# # # @app.get("/") | |
# # # def transcribe_audio(): | |
# # # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# # # predicted_ids = model.generate(input_features) | |
# # # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# # # return {"transcription": transcription[0]} | |
# # # if __name__ == "__main__": | |
# # # import uvicorn | |
# # # uvicorn.run(app, host="0.0.0.0", port=8000) | |
# # # if __name__=='__main__': | |
# # # uvicorn.run('main:app', reload=True) | |
# # #uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
# # #curl -X GET "http://localhost:8000/?text=I%20like%20Apples" | |
# # #http://localhost:8000/?text=I%20like%20Apples | |
# # # from fastapi import FastAPI | |
# # # from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# # # import librosa | |
# # # import uvicorn | |
# # # app = FastAPI() | |
# # # # Load model and processor | |
# # # processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
# # # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
# # # model.config.forced_decoder_ids = None | |
# # # # Path to your audio file | |
# # # audio_file_path = "/home/pranjal/Downloads/output.mp3" | |
# # # # Read the audio file | |
# # # audio_data, _ = librosa.load(audio_file_path, sr=16000) | |
# # # @app.get("/") | |
# # # def transcribe_audio(): | |
# # # # Process the audio data using the Whisper processor | |
# # # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# # # # Generate transcription | |
# # # predicted_ids = model.generate(input_features) | |
# # # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# # # return {"transcription": transcription[0]} | |
# # # if __name__ == "__main__": | |
# # # import uvicorn | |
# # # uvicorn.run(app, host="0.0.0.0", port=8000) | |
# # # if __name__=='__app__': | |
# # # uvicorn.run('main:app', reload=True) | |
# # from fastapi import FastAPI, UploadFile, File | |
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# # import librosa | |
# # from fastapi.responses import HTMLResponse | |
# # import uvicorn | |
# # import io | |
# # app = FastAPI() | |
# # # Load model and processor | |
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
# # model.config.forced_decoder_ids = None | |
# # @app.get("/") | |
# # def read_root(): | |
# # html_form = """ | |
# # <html> | |
# # <body> | |
# # <h2>ASR Transcription</h2> | |
# # <form action="/transcribe" method="post" enctype="multipart/form-data"> | |
# # <label for="audio_file">Upload an audio file (MP3 or WAV):</label> | |
# # <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br> | |
# # <input type="submit" value="Transcribe"> | |
# # </form> | |
# # </body> | |
# # </html> | |
# # """ | |
# # return HTMLResponse(content=html_form, status_code=200) | |
# # @app.post("/transcribe") | |
# # async def transcribe_audio(audio_file: UploadFile): | |
# # try: | |
# # # Read the uploaded audio file | |
# # audio_data = await audio_file.read() | |
# # # Process the audio data using the Whisper processor | |
# # audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000) | |
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# # # Generate transcription | |
# # predicted_ids = model.generate(input_features) | |
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# # return {"transcription": transcription[0]} | |
# # except Exception as e: | |
# # return {"error": str(e)} | |
# # if __name__ == "__app__": | |
# # uvicorn.run(app, host="0.0.0.0", port=8000, reload=True) | |
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
# from fastapi import FastAPI, UploadFile, File | |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# import librosa | |
# from fastapi.responses import HTMLResponse | |
# import uvicorn | |
# import io | |
# app = FastAPI() | |
# # # Load model and processor | |
# # processor = WhisperProcessor.from_pretrained("openai/whisper-medium") | |
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium") | |
# # model.config.forced_decoder_ids = None | |
# import whisper | |
# model = whisper.load_model("small") | |
# @app.get("/") | |
# def read_root(): | |
# html_form = """ | |
# <html> | |
# <body> | |
# <h2>ASR Transcription</h2> | |
# <form action="/transcribe" method="post" enctype="multipart/form-data"> | |
# <label for="audio_file">Upload an audio file (MP3 or WAV):</label> | |
# <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br> | |
# <input type="submit" value="Transcribe"> | |
# </form> | |
# </body> | |
# </html> | |
# """ | |
# return HTMLResponse(content=html_form, status_code=200) | |
# @app.post("/transcribe") | |
# async def transcribe_audio(audio_file: UploadFile): | |
# try: | |
# # Read the uploaded audio file | |
# audio_data = await audio_file.read() | |
# # Process the audio data using the Whisper processor | |
# # audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000) | |
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# # # Generate transcription | |
# # predicted_ids = model.generate(input_features) | |
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# result = model.transcribe("/home/pranjal/Downloads/rt.mp3") | |
# return {"transcription": result['text']} | |
# except Exception as e: | |
# return {"error": str(e)} | |
# # if __name__ == "__app__": | |
# # uvicorn.run(app, host="0.0.0.0", port=8000, reload=True) | |
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
from fastapi import FastAPI, UploadFile, File | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
from fastapi.responses import HTMLResponse | |
import librosa | |
import io | |
import re | |
html_tag_remover = re.compile(r'<[^>]+>') | |
def remove_tags(text): | |
return html_tag_remover.sub('', text) | |
app = FastAPI() | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
model.config.forced_decoder_ids = None | |
chunk_duration = 30 | |
overlap_duration = 5 | |
def read_root(): | |
html_form = """ | |
<html> | |
<body> | |
<h2>ASR Transcription</h2> | |
<form action="/transcribe" method="post" enctype="multipart/form-data"> | |
<label for="audio_file">Upload an audio file (MP3 or WAV):</label> | |
<input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br> | |
<input type="submit" value="Transcribe"> | |
</form> | |
</body> | |
</html> | |
""" | |
return HTMLResponse(content=html_form, status_code=200) | |
async def transcribe_audio(audio_file: UploadFile): | |
audio_data = await audio_file.read() | |
audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000) | |
transcription = [] | |
start = 0 | |
while start < len(audio_data): | |
end = start + chunk_duration * 16000 | |
audio_chunk = audio_data[start:end] | |
input_features = processor(audio_chunk.tolist(), return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features, max_length=1000) | |
chunk_transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
transcription.extend(chunk_transcription) | |
start = end - overlap_duration * 16000 | |
final_transcription = " ".join(transcription) | |
final_transcription = remove_tags(final_transcription) | |
return {"transcription": final_transcription} | |