Spaces:
Runtime error
Runtime error
/* | |
* AAC decoder | |
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) | |
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) | |
* Copyright (c) 2008-2013 Alex Converse <[email protected]> | |
* | |
* AAC LATM decoder | |
* Copyright (c) 2008-2010 Paul Kendall <[email protected]> | |
* Copyright (c) 2010 Janne Grunau <[email protected]> | |
* | |
* AAC decoder fixed-point implementation | |
* Copyright (c) 2013 | |
* MIPS Technologies, Inc., California. | |
* | |
* This file is part of FFmpeg. | |
* | |
* FFmpeg is free software; you can redistribute it and/or | |
* modify it under the terms of the GNU Lesser General Public | |
* License as published by the Free Software Foundation; either | |
* version 2.1 of the License, or (at your option) any later version. | |
* | |
* FFmpeg is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
* Lesser General Public License for more details. | |
* | |
* You should have received a copy of the GNU Lesser General Public | |
* License along with FFmpeg; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
/** | |
* @file | |
* AAC decoder | |
* @author Oded Shimon ( ods15 ods15 dyndns org ) | |
* @author Maxim Gavrilov ( maxim.gavrilov gmail com ) | |
* | |
* AAC decoder fixed-point implementation | |
* @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com ) | |
* @author Nedeljko Babic ( nedeljko.babic imgtec com ) | |
*/ | |
/* | |
* supported tools | |
* | |
* Support? Name | |
* N (code in SoC repo) gain control | |
* Y block switching | |
* Y window shapes - standard | |
* N window shapes - Low Delay | |
* Y filterbank - standard | |
* N (code in SoC repo) filterbank - Scalable Sample Rate | |
* Y Temporal Noise Shaping | |
* Y Long Term Prediction | |
* Y intensity stereo | |
* Y channel coupling | |
* Y frequency domain prediction | |
* Y Perceptual Noise Substitution | |
* Y Mid/Side stereo | |
* N Scalable Inverse AAC Quantization | |
* N Frequency Selective Switch | |
* N upsampling filter | |
* Y quantization & coding - AAC | |
* N quantization & coding - TwinVQ | |
* N quantization & coding - BSAC | |
* N AAC Error Resilience tools | |
* N Error Resilience payload syntax | |
* N Error Protection tool | |
* N CELP | |
* N Silence Compression | |
* N HVXC | |
* N HVXC 4kbits/s VR | |
* N Structured Audio tools | |
* N Structured Audio Sample Bank Format | |
* N MIDI | |
* N Harmonic and Individual Lines plus Noise | |
* N Text-To-Speech Interface | |
* Y Spectral Band Replication | |
* Y (not in this code) Layer-1 | |
* Y (not in this code) Layer-2 | |
* Y (not in this code) Layer-3 | |
* N SinuSoidal Coding (Transient, Sinusoid, Noise) | |
* Y Parametric Stereo | |
* N Direct Stream Transfer | |
* Y (not in fixed point code) Enhanced AAC Low Delay (ER AAC ELD) | |
* | |
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. | |
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and | |
Parametric Stereo. | |
*/ | |
static VLC vlc_scalefactors; | |
static VLC vlc_spectral[11]; | |
static int output_configure(AACContext *ac, | |
uint8_t layout_map[MAX_ELEM_ID*4][3], int tags, | |
enum OCStatus oc_type, int get_new_frame); | |
static int count_channels(uint8_t (*layout)[3], int tags) | |
{ | |
int i, sum = 0; | |
for (i = 0; i < tags; i++) { | |
int syn_ele = layout[i][0]; | |
int pos = layout[i][2]; | |
sum += (1 + (syn_ele == TYPE_CPE)) * | |
(pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC); | |
} | |
return sum; | |
} | |
/** | |
* Check for the channel element in the current channel position configuration. | |
* If it exists, make sure the appropriate element is allocated and map the | |
* channel order to match the internal FFmpeg channel layout. | |
* | |
* @param che_pos current channel position configuration | |
* @param type channel element type | |
* @param id channel element id | |
* @param channels count of the number of channels in the configuration | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static av_cold int che_configure(AACContext *ac, | |
enum ChannelPosition che_pos, | |
int type, int id, int *channels) | |
{ | |
if (*channels >= MAX_CHANNELS) | |
return AVERROR_INVALIDDATA; | |
if (che_pos) { | |
if (!ac->che[type][id]) { | |
int ret; | |
if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement)))) | |
return AVERROR(ENOMEM); | |
ret = AAC_RENAME(ff_aac_sbr_ctx_init)(ac, &ac->che[type][id]->sbr, type); | |
if (ret < 0) | |
return ret; | |
} | |
if (type != TYPE_CCE) { | |
if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) { | |
av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0]; | |
if (type == TYPE_CPE || | |
(type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) { | |
ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1]; | |
} | |
} | |
} else { | |
if (ac->che[type][id]) | |
AAC_RENAME(ff_aac_sbr_ctx_close)(&ac->che[type][id]->sbr); | |
av_freep(&ac->che[type][id]); | |
} | |
return 0; | |
} | |
static int frame_configure_elements(AVCodecContext *avctx) | |
{ | |
AACContext *ac = avctx->priv_data; | |
int type, id, ch, ret; | |
/* set channel pointers to internal buffers by default */ | |
for (type = 0; type < 4; type++) { | |
for (id = 0; id < MAX_ELEM_ID; id++) { | |
ChannelElement *che = ac->che[type][id]; | |
if (che) { | |
che->ch[0].ret = che->ch[0].ret_buf; | |
che->ch[1].ret = che->ch[1].ret_buf; | |
} | |
} | |
} | |
/* get output buffer */ | |
av_frame_unref(ac->frame); | |
if (!avctx->ch_layout.nb_channels) | |
return 1; | |
ac->frame->nb_samples = 2048; | |
if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0) | |
return ret; | |
/* map output channel pointers to AVFrame data */ | |
for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) { | |
if (ac->output_element[ch]) | |
ac->output_element[ch]->ret = (INTFLOAT *)ac->frame->extended_data[ch]; | |
} | |
return 0; | |
} | |
struct elem_to_channel { | |
uint64_t av_position; | |
uint8_t syn_ele; | |
uint8_t elem_id; | |
uint8_t aac_position; | |
}; | |
static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], | |
uint8_t (*layout_map)[3], int offset, uint64_t left, | |
uint64_t right, int pos, uint64_t *layout) | |
{ | |
if (layout_map[offset][0] == TYPE_CPE) { | |
e2c_vec[offset] = (struct elem_to_channel) { | |
.av_position = left | right, | |
.syn_ele = TYPE_CPE, | |
.elem_id = layout_map[offset][1], | |
.aac_position = pos | |
}; | |
if (e2c_vec[offset].av_position != UINT64_MAX) | |
*layout |= e2c_vec[offset].av_position; | |
return 1; | |
} else { | |
e2c_vec[offset] = (struct elem_to_channel) { | |
.av_position = left, | |
.syn_ele = TYPE_SCE, | |
.elem_id = layout_map[offset][1], | |
.aac_position = pos | |
}; | |
e2c_vec[offset + 1] = (struct elem_to_channel) { | |
.av_position = right, | |
.syn_ele = TYPE_SCE, | |
.elem_id = layout_map[offset + 1][1], | |
.aac_position = pos | |
}; | |
if (left != UINT64_MAX) | |
*layout |= left; | |
if (right != UINT64_MAX) | |
*layout |= right; | |
return 2; | |
} | |
} | |
static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, | |
int current) | |
{ | |
int num_pos_channels = 0; | |
int first_cpe = 0; | |
int sce_parity = 0; | |
int i; | |
for (i = current; i < tags; i++) { | |
if (layout_map[i][2] != pos) | |
break; | |
if (layout_map[i][0] == TYPE_CPE) { | |
if (sce_parity) { | |
if (pos == AAC_CHANNEL_FRONT && !first_cpe) { | |
sce_parity = 0; | |
} else { | |
return -1; | |
} | |
} | |
num_pos_channels += 2; | |
first_cpe = 1; | |
} else { | |
num_pos_channels++; | |
sce_parity ^= (pos != AAC_CHANNEL_LFE); | |
} | |
} | |
if (sce_parity && | |
(pos == AAC_CHANNEL_FRONT && first_cpe)) | |
return -1; | |
return num_pos_channels; | |
} | |
static int assign_channels(struct elem_to_channel e2c_vec[MAX_ELEM_ID], uint8_t (*layout_map)[3], | |
uint64_t *layout, int tags, int layer, int pos, int *current) | |
{ | |
int i = *current, j = 0; | |
int nb_channels = count_paired_channels(layout_map, tags, pos, i); | |
if (nb_channels < 0 || nb_channels > 5) | |
return 0; | |
if (pos == AAC_CHANNEL_LFE) { | |
while (nb_channels) { | |
if (aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE) | |
return -1; | |
e2c_vec[i] = (struct elem_to_channel) { | |
.av_position = 1ULL << aac_channel_map[layer][pos - 1][j], | |
.syn_ele = layout_map[i][0], | |
.elem_id = layout_map[i][1], | |
.aac_position = pos | |
}; | |
*layout |= e2c_vec[i].av_position; | |
i++; | |
j++; | |
nb_channels--; | |
} | |
*current = i; | |
return 0; | |
} | |
while (nb_channels & 1) { | |
if (aac_channel_map[layer][pos - 1][0] == AV_CHAN_NONE) | |
return -1; | |
if (aac_channel_map[layer][pos - 1][0] == AV_CHAN_UNUSED) | |
break; | |
e2c_vec[i] = (struct elem_to_channel) { | |
.av_position = 1ULL << aac_channel_map[layer][pos - 1][0], | |
.syn_ele = layout_map[i][0], | |
.elem_id = layout_map[i][1], | |
.aac_position = pos | |
}; | |
*layout |= e2c_vec[i].av_position; | |
i++; | |
nb_channels--; | |
} | |
j = (pos != AAC_CHANNEL_SIDE) && nb_channels <= 3 ? 3 : 1; | |
while (nb_channels >= 2) { | |
if (aac_channel_map[layer][pos - 1][j] == AV_CHAN_NONE || | |
aac_channel_map[layer][pos - 1][j+1] == AV_CHAN_NONE) | |
return -1; | |
i += assign_pair(e2c_vec, layout_map, i, | |
1ULL << aac_channel_map[layer][pos - 1][j], | |
1ULL << aac_channel_map[layer][pos - 1][j+1], | |
pos, layout); | |
j += 2; | |
nb_channels -= 2; | |
} | |
while (nb_channels & 1) { | |
if (aac_channel_map[layer][pos - 1][5] == AV_CHAN_NONE) | |
return -1; | |
e2c_vec[i] = (struct elem_to_channel) { | |
.av_position = 1ULL << aac_channel_map[layer][pos - 1][5], | |
.syn_ele = layout_map[i][0], | |
.elem_id = layout_map[i][1], | |
.aac_position = pos | |
}; | |
*layout |= e2c_vec[i].av_position; | |
i++; | |
nb_channels--; | |
} | |
if (nb_channels) | |
return -1; | |
*current = i; | |
return 0; | |
} | |
static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) | |
{ | |
int i, n, total_non_cc_elements; | |
struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } }; | |
uint64_t layout = 0; | |
if (FF_ARRAY_ELEMS(e2c_vec) < tags) | |
return 0; | |
for (n = 0, i = 0; n < 3 && i < tags; n++) { | |
int ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_FRONT, &i); | |
if (ret < 0) | |
return 0; | |
ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_SIDE, &i); | |
if (ret < 0) | |
return 0; | |
ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_BACK, &i); | |
if (ret < 0) | |
return 0; | |
ret = assign_channels(e2c_vec, layout_map, &layout, tags, n, AAC_CHANNEL_LFE, &i); | |
if (ret < 0) | |
return 0; | |
} | |
total_non_cc_elements = n = i; | |
if (layout == AV_CH_LAYOUT_22POINT2) { | |
// For 22.2 reorder the result as needed | |
FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[0]); // FL & FR first (final), FC third | |
FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[1]); // FC second (final), FLc & FRc third | |
FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[2]); // LFE1 third (final), FLc & FRc seventh | |
FFSWAP(struct elem_to_channel, e2c_vec[4], e2c_vec[3]); // BL & BR fourth (final), SiL & SiR fifth | |
FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[4]); // FLc & FRc fifth (final), SiL & SiR seventh | |
FFSWAP(struct elem_to_channel, e2c_vec[7], e2c_vec[6]); // LFE2 seventh (final), SiL & SiR eight (final) | |
FFSWAP(struct elem_to_channel, e2c_vec[9], e2c_vec[8]); // TpFL & TpFR ninth (final), TFC tenth (final) | |
FFSWAP(struct elem_to_channel, e2c_vec[11], e2c_vec[10]); // TC eleventh (final), TpSiL & TpSiR twelth | |
FFSWAP(struct elem_to_channel, e2c_vec[12], e2c_vec[11]); // TpBL & TpBR twelth (final), TpSiL & TpSiR thirteenth (final) | |
} else { | |
// For everything else, utilize the AV channel position define as a | |
// stable sort. | |
do { | |
int next_n = 0; | |
for (i = 1; i < n; i++) | |
if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) { | |
FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]); | |
next_n = i; | |
} | |
n = next_n; | |
} while (n > 0); | |
} | |
for (i = 0; i < total_non_cc_elements; i++) { | |
layout_map[i][0] = e2c_vec[i].syn_ele; | |
layout_map[i][1] = e2c_vec[i].elem_id; | |
layout_map[i][2] = e2c_vec[i].aac_position; | |
} | |
return layout; | |
} | |
/** | |
* Save current output configuration if and only if it has been locked. | |
*/ | |
static int push_output_configuration(AACContext *ac) { | |
int pushed = 0; | |
if (ac->oc[1].status == OC_LOCKED || ac->oc[0].status == OC_NONE) { | |
ac->oc[0] = ac->oc[1]; | |
pushed = 1; | |
} | |
ac->oc[1].status = OC_NONE; | |
return pushed; | |
} | |
/** | |
* Restore the previous output configuration if and only if the current | |
* configuration is unlocked. | |
*/ | |
static void pop_output_configuration(AACContext *ac) { | |
if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) { | |
ac->oc[1] = ac->oc[0]; | |
ac->avctx->ch_layout = ac->oc[1].ch_layout; | |
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, | |
ac->oc[1].status, 0); | |
} | |
} | |
/** | |
* Configure output channel order based on the current program | |
* configuration element. | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int output_configure(AACContext *ac, | |
uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags, | |
enum OCStatus oc_type, int get_new_frame) | |
{ | |
AVCodecContext *avctx = ac->avctx; | |
int i, channels = 0, ret; | |
uint64_t layout = 0; | |
uint8_t id_map[TYPE_END][MAX_ELEM_ID] = {{ 0 }}; | |
uint8_t type_counts[TYPE_END] = { 0 }; | |
if (ac->oc[1].layout_map != layout_map) { | |
memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0])); | |
ac->oc[1].layout_map_tags = tags; | |
} | |
for (i = 0; i < tags; i++) { | |
int type = layout_map[i][0]; | |
int id = layout_map[i][1]; | |
id_map[type][id] = type_counts[type]++; | |
if (id_map[type][id] >= MAX_ELEM_ID) { | |
avpriv_request_sample(ac->avctx, "Too large remapped id"); | |
return AVERROR_PATCHWELCOME; | |
} | |
} | |
// Try to sniff a reasonable channel order, otherwise output the | |
// channels in the order the PCE declared them. | |
FF_DISABLE_DEPRECATION_WARNINGS | |
if (avctx->request_channel_layout == AV_CH_LAYOUT_NATIVE) | |
ac->output_channel_order = CHANNEL_ORDER_CODED; | |
FF_ENABLE_DEPRECATION_WARNINGS | |
if (ac->output_channel_order == CHANNEL_ORDER_DEFAULT) | |
layout = sniff_channel_order(layout_map, tags); | |
for (i = 0; i < tags; i++) { | |
int type = layout_map[i][0]; | |
int id = layout_map[i][1]; | |
int iid = id_map[type][id]; | |
int position = layout_map[i][2]; | |
// Allocate or free elements depending on if they are in the | |
// current program configuration. | |
ret = che_configure(ac, position, type, iid, &channels); | |
if (ret < 0) | |
return ret; | |
ac->tag_che_map[type][id] = ac->che[type][iid]; | |
} | |
if (ac->oc[1].m4ac.ps == 1 && channels == 2) { | |
if (layout == AV_CH_FRONT_CENTER) { | |
layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT; | |
} else { | |
layout = 0; | |
} | |
} | |
av_channel_layout_uninit(&ac->oc[1].ch_layout); | |
if (layout) | |
av_channel_layout_from_mask(&ac->oc[1].ch_layout, layout); | |
else { | |
ac->oc[1].ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; | |
ac->oc[1].ch_layout.nb_channels = channels; | |
} | |
av_channel_layout_copy(&avctx->ch_layout, &ac->oc[1].ch_layout); | |
ac->oc[1].status = oc_type; | |
if (get_new_frame) { | |
if ((ret = frame_configure_elements(ac->avctx)) < 0) | |
return ret; | |
} | |
return 0; | |
} | |
static void flush(AVCodecContext *avctx) | |
{ | |
AACContext *ac= avctx->priv_data; | |
int type, i, j; | |
for (type = 3; type >= 0; type--) { | |
for (i = 0; i < MAX_ELEM_ID; i++) { | |
ChannelElement *che = ac->che[type][i]; | |
if (che) { | |
for (j = 0; j <= 1; j++) { | |
memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved)); | |
} | |
} | |
} | |
} | |
} | |
/** | |
* Set up channel positions based on a default channel configuration | |
* as specified in table 1.17. | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int set_default_channel_config(AACContext *ac, AVCodecContext *avctx, | |
uint8_t (*layout_map)[3], | |
int *tags, | |
int channel_config) | |
{ | |
if (channel_config < 1 || (channel_config > 7 && channel_config < 11) || | |
channel_config > 14) { | |
av_log(avctx, AV_LOG_ERROR, | |
"invalid default channel configuration (%d)\n", | |
channel_config); | |
return AVERROR_INVALIDDATA; | |
} | |
*tags = tags_per_config[channel_config]; | |
memcpy(layout_map, aac_channel_layout_map[channel_config - 1], | |
*tags * sizeof(*layout_map)); | |
/* | |
* AAC specification has 7.1(wide) as a default layout for 8-channel streams. | |
* However, at least Nero AAC encoder encodes 7.1 streams using the default | |
* channel config 7, mapping the side channels of the original audio stream | |
* to the second AAC_CHANNEL_FRONT pair in the AAC stream. Similarly, e.g. FAAD | |
* decodes the second AAC_CHANNEL_FRONT pair as side channels, therefore decoding | |
* the incorrect streams as if they were correct (and as the encoder intended). | |
* | |
* As actual intended 7.1(wide) streams are very rare, default to assuming a | |
* 7.1 layout was intended. | |
*/ | |
if (channel_config == 7 && avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) { | |
layout_map[2][2] = AAC_CHANNEL_BACK; | |
if (!ac || !ac->warned_71_wide++) { | |
av_log(avctx, AV_LOG_INFO, "Assuming an incorrectly encoded 7.1 channel layout" | |
" instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode" | |
" according to the specification instead.\n", FF_COMPLIANCE_STRICT); | |
} | |
} | |
return 0; | |
} | |
static ChannelElement *get_che(AACContext *ac, int type, int elem_id) | |
{ | |
/* For PCE based channel configurations map the channels solely based | |
* on tags. */ | |
if (!ac->oc[1].m4ac.chan_config) { | |
return ac->tag_che_map[type][elem_id]; | |
} | |
// Allow single CPE stereo files to be signalled with mono configuration. | |
if (!ac->tags_mapped && type == TYPE_CPE && | |
ac->oc[1].m4ac.chan_config == 1) { | |
uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
int layout_map_tags; | |
push_output_configuration(ac); | |
av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n"); | |
if (set_default_channel_config(ac, ac->avctx, layout_map, | |
&layout_map_tags, 2) < 0) | |
return NULL; | |
if (output_configure(ac, layout_map, layout_map_tags, | |
OC_TRIAL_FRAME, 1) < 0) | |
return NULL; | |
ac->oc[1].m4ac.chan_config = 2; | |
ac->oc[1].m4ac.ps = 0; | |
} | |
// And vice-versa | |
if (!ac->tags_mapped && type == TYPE_SCE && | |
ac->oc[1].m4ac.chan_config == 2) { | |
uint8_t layout_map[MAX_ELEM_ID * 4][3]; | |
int layout_map_tags; | |
push_output_configuration(ac); | |
av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n"); | |
layout_map_tags = 2; | |
layout_map[0][0] = layout_map[1][0] = TYPE_SCE; | |
layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; | |
layout_map[0][1] = 0; | |
layout_map[1][1] = 1; | |
if (output_configure(ac, layout_map, layout_map_tags, | |
OC_TRIAL_FRAME, 1) < 0) | |
return NULL; | |
if (ac->oc[1].m4ac.sbr) | |
ac->oc[1].m4ac.ps = -1; | |
} | |
/* For indexed channel configurations map the channels solely based | |
* on position. */ | |
switch (ac->oc[1].m4ac.chan_config) { | |
case 14: | |
if (ac->tags_mapped > 2 && ((type == TYPE_CPE && elem_id < 3) || | |
(type == TYPE_LFE && elem_id < 1))) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; | |
} | |
case 13: | |
if (ac->tags_mapped > 3 && ((type == TYPE_CPE && elem_id < 8) || | |
(type == TYPE_SCE && elem_id < 6) || | |
(type == TYPE_LFE && elem_id < 2))) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; | |
} | |
case 12: | |
case 7: | |
if (ac->tags_mapped == 3 && type == TYPE_CPE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; | |
} | |
case 11: | |
if (ac->tags_mapped == 3 && type == TYPE_SCE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; | |
} | |
case 6: | |
/* Some streams incorrectly code 5.1 audio as | |
* SCE[0] CPE[0] CPE[1] SCE[1] | |
* instead of | |
* SCE[0] CPE[0] CPE[1] LFE[0]. | |
* If we seem to have encountered such a stream, transfer | |
* the LFE[0] element to the SCE[1]'s mapping */ | |
if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { | |
if (!ac->warned_remapping_once && (type != TYPE_LFE || elem_id != 0)) { | |
av_log(ac->avctx, AV_LOG_WARNING, | |
"This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n", | |
type == TYPE_SCE ? "SCE" : "LFE", elem_id); | |
ac->warned_remapping_once++; | |
} | |
ac->tags_mapped++; | |
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; | |
} | |
case 5: | |
if (ac->tags_mapped == 2 && type == TYPE_CPE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; | |
} | |
case 4: | |
/* Some streams incorrectly code 4.0 audio as | |
* SCE[0] CPE[0] LFE[0] | |
* instead of | |
* SCE[0] CPE[0] SCE[1]. | |
* If we seem to have encountered such a stream, transfer | |
* the SCE[1] element to the LFE[0]'s mapping */ | |
if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { | |
if (!ac->warned_remapping_once && (type != TYPE_SCE || elem_id != 1)) { | |
av_log(ac->avctx, AV_LOG_WARNING, | |
"This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n", | |
type == TYPE_SCE ? "SCE" : "LFE", elem_id); | |
ac->warned_remapping_once++; | |
} | |
ac->tags_mapped++; | |
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_SCE][1]; | |
} | |
if (ac->tags_mapped == 2 && | |
ac->oc[1].m4ac.chan_config == 4 && | |
type == TYPE_SCE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; | |
} | |
case 3: | |
case 2: | |
if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && | |
type == TYPE_CPE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; | |
} else if (ac->tags_mapped == 1 && ac->oc[1].m4ac.chan_config == 2 && | |
type == TYPE_SCE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; | |
} | |
case 1: | |
if (!ac->tags_mapped && type == TYPE_SCE) { | |
ac->tags_mapped++; | |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; | |
} | |
default: | |
return NULL; | |
} | |
} | |
/** | |
* Decode an array of 4 bit element IDs, optionally interleaved with a | |
* stereo/mono switching bit. | |
* | |
* @param type speaker type/position for these channels | |
*/ | |
static void decode_channel_map(uint8_t layout_map[][3], | |
enum ChannelPosition type, | |
GetBitContext *gb, int n) | |
{ | |
while (n--) { | |
enum RawDataBlockType syn_ele; | |
switch (type) { | |
case AAC_CHANNEL_FRONT: | |
case AAC_CHANNEL_BACK: | |
case AAC_CHANNEL_SIDE: | |
syn_ele = get_bits1(gb); | |
break; | |
case AAC_CHANNEL_CC: | |
skip_bits1(gb); | |
syn_ele = TYPE_CCE; | |
break; | |
case AAC_CHANNEL_LFE: | |
syn_ele = TYPE_LFE; | |
break; | |
default: | |
// AAC_CHANNEL_OFF has no channel map | |
av_assert0(0); | |
} | |
layout_map[0][0] = syn_ele; | |
layout_map[0][1] = get_bits(gb, 4); | |
layout_map[0][2] = type; | |
layout_map++; | |
} | |
} | |
static inline void relative_align_get_bits(GetBitContext *gb, | |
int reference_position) { | |
int n = (reference_position - get_bits_count(gb) & 7); | |
if (n) | |
skip_bits(gb, n); | |
} | |
/** | |
* Decode program configuration element; reference: table 4.2. | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, | |
uint8_t (*layout_map)[3], | |
GetBitContext *gb, int byte_align_ref) | |
{ | |
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc; | |
int sampling_index; | |
int comment_len; | |
int tags; | |
skip_bits(gb, 2); // object_type | |
sampling_index = get_bits(gb, 4); | |
if (m4ac->sampling_index != sampling_index) | |
av_log(avctx, AV_LOG_WARNING, | |
"Sample rate index in program config element does not " | |
"match the sample rate index configured by the container.\n"); | |
num_front = get_bits(gb, 4); | |
num_side = get_bits(gb, 4); | |
num_back = get_bits(gb, 4); | |
num_lfe = get_bits(gb, 2); | |
num_assoc_data = get_bits(gb, 3); | |
num_cc = get_bits(gb, 4); | |
if (get_bits1(gb)) | |
skip_bits(gb, 4); // mono_mixdown_tag | |
if (get_bits1(gb)) | |
skip_bits(gb, 4); // stereo_mixdown_tag | |
if (get_bits1(gb)) | |
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround | |
if (get_bits_left(gb) < 5 * (num_front + num_side + num_back + num_cc) + 4 *(num_lfe + num_assoc_data + num_cc)) { | |
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); | |
return -1; | |
} | |
decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front); | |
tags = num_front; | |
decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side); | |
tags += num_side; | |
decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back); | |
tags += num_back; | |
decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe); | |
tags += num_lfe; | |
skip_bits_long(gb, 4 * num_assoc_data); | |
decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc); | |
tags += num_cc; | |
relative_align_get_bits(gb, byte_align_ref); | |
/* comment field, first byte is length */ | |
comment_len = get_bits(gb, 8) * 8; | |
if (get_bits_left(gb) < comment_len) { | |
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); | |
return AVERROR_INVALIDDATA; | |
} | |
skip_bits_long(gb, comment_len); | |
return tags; | |
} | |
/** | |
* Decode GA "General Audio" specific configuration; reference: table 4.1. | |
* | |
* @param ac pointer to AACContext, may be null | |
* @param avctx pointer to AVCCodecContext, used for logging | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, | |
GetBitContext *gb, | |
int get_bit_alignment, | |
MPEG4AudioConfig *m4ac, | |
int channel_config) | |
{ | |
int extension_flag, ret, ep_config, res_flags; | |
uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
int tags = 0; | |
m4ac->frame_length_short = get_bits1(gb); | |
if (m4ac->frame_length_short && m4ac->sbr == 1) { | |
avpriv_report_missing_feature(avctx, "SBR with 960 frame length"); | |
if (ac) ac->warned_960_sbr = 1; | |
m4ac->sbr = 0; | |
m4ac->ps = 0; | |
} | |
if (get_bits1(gb)) // dependsOnCoreCoder | |
skip_bits(gb, 14); // coreCoderDelay | |
extension_flag = get_bits1(gb); | |
if (m4ac->object_type == AOT_AAC_SCALABLE || | |
m4ac->object_type == AOT_ER_AAC_SCALABLE) | |
skip_bits(gb, 3); // layerNr | |
if (channel_config == 0) { | |
skip_bits(gb, 4); // element_instance_tag | |
tags = decode_pce(avctx, m4ac, layout_map, gb, get_bit_alignment); | |
if (tags < 0) | |
return tags; | |
} else { | |
if ((ret = set_default_channel_config(ac, avctx, layout_map, | |
&tags, channel_config))) | |
return ret; | |
} | |
if (count_channels(layout_map, tags) > 1) { | |
m4ac->ps = 0; | |
} else if (m4ac->sbr == 1 && m4ac->ps == -1) | |
m4ac->ps = 1; | |
if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) | |
return ret; | |
if (extension_flag) { | |
switch (m4ac->object_type) { | |
case AOT_ER_BSAC: | |
skip_bits(gb, 5); // numOfSubFrame | |
skip_bits(gb, 11); // layer_length | |
break; | |
case AOT_ER_AAC_LC: | |
case AOT_ER_AAC_LTP: | |
case AOT_ER_AAC_SCALABLE: | |
case AOT_ER_AAC_LD: | |
res_flags = get_bits(gb, 3); | |
if (res_flags) { | |
avpriv_report_missing_feature(avctx, | |
"AAC data resilience (flags %x)", | |
res_flags); | |
return AVERROR_PATCHWELCOME; | |
} | |
break; | |
} | |
skip_bits1(gb); // extensionFlag3 (TBD in version 3) | |
} | |
switch (m4ac->object_type) { | |
case AOT_ER_AAC_LC: | |
case AOT_ER_AAC_LTP: | |
case AOT_ER_AAC_SCALABLE: | |
case AOT_ER_AAC_LD: | |
ep_config = get_bits(gb, 2); | |
if (ep_config) { | |
avpriv_report_missing_feature(avctx, | |
"epConfig %d", ep_config); | |
return AVERROR_PATCHWELCOME; | |
} | |
} | |
return 0; | |
} | |
static int decode_eld_specific_config(AACContext *ac, AVCodecContext *avctx, | |
GetBitContext *gb, | |
MPEG4AudioConfig *m4ac, | |
int channel_config) | |
{ | |
int ret, ep_config, res_flags; | |
uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
int tags = 0; | |
const int ELDEXT_TERM = 0; | |
m4ac->ps = 0; | |
m4ac->sbr = 0; | |
m4ac->frame_length_short = get_bits1(gb); | |
res_flags = get_bits(gb, 3); | |
if (res_flags) { | |
avpriv_report_missing_feature(avctx, | |
"AAC data resilience (flags %x)", | |
res_flags); | |
return AVERROR_PATCHWELCOME; | |
} | |
if (get_bits1(gb)) { // ldSbrPresentFlag | |
avpriv_report_missing_feature(avctx, | |
"Low Delay SBR"); | |
return AVERROR_PATCHWELCOME; | |
} | |
while (get_bits(gb, 4) != ELDEXT_TERM) { | |
int len = get_bits(gb, 4); | |
if (len == 15) | |
len += get_bits(gb, 8); | |
if (len == 15 + 255) | |
len += get_bits(gb, 16); | |
if (get_bits_left(gb) < len * 8 + 4) { | |
av_log(avctx, AV_LOG_ERROR, overread_err); | |
return AVERROR_INVALIDDATA; | |
} | |
skip_bits_long(gb, 8 * len); | |
} | |
if ((ret = set_default_channel_config(ac, avctx, layout_map, | |
&tags, channel_config))) | |
return ret; | |
if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) | |
return ret; | |
ep_config = get_bits(gb, 2); | |
if (ep_config) { | |
avpriv_report_missing_feature(avctx, | |
"epConfig %d", ep_config); | |
return AVERROR_PATCHWELCOME; | |
} | |
return 0; | |
} | |
/** | |
* Decode audio specific configuration; reference: table 1.13. | |
* | |
* @param ac pointer to AACContext, may be null | |
* @param avctx pointer to AVCCodecContext, used for logging | |
* @param m4ac pointer to MPEG4AudioConfig, used for parsing | |
* @param gb buffer holding an audio specific config | |
* @param get_bit_alignment relative alignment for byte align operations | |
* @param sync_extension look for an appended sync extension | |
* | |
* @return Returns error status or number of consumed bits. <0 - error | |
*/ | |
static int decode_audio_specific_config_gb(AACContext *ac, | |
AVCodecContext *avctx, | |
MPEG4AudioConfig *m4ac, | |
GetBitContext *gb, | |
int get_bit_alignment, | |
int sync_extension) | |
{ | |
int i, ret; | |
GetBitContext gbc = *gb; | |
MPEG4AudioConfig m4ac_bak = *m4ac; | |
if ((i = ff_mpeg4audio_get_config_gb(m4ac, &gbc, sync_extension, avctx)) < 0) { | |
*m4ac = m4ac_bak; | |
return AVERROR_INVALIDDATA; | |
} | |
if (m4ac->sampling_index > 12) { | |
av_log(avctx, AV_LOG_ERROR, | |
"invalid sampling rate index %d\n", | |
m4ac->sampling_index); | |
*m4ac = m4ac_bak; | |
return AVERROR_INVALIDDATA; | |
} | |
if (m4ac->object_type == AOT_ER_AAC_LD && | |
(m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) { | |
av_log(avctx, AV_LOG_ERROR, | |
"invalid low delay sampling rate index %d\n", | |
m4ac->sampling_index); | |
*m4ac = m4ac_bak; | |
return AVERROR_INVALIDDATA; | |
} | |
skip_bits_long(gb, i); | |
switch (m4ac->object_type) { | |
case AOT_AAC_MAIN: | |
case AOT_AAC_LC: | |
case AOT_AAC_SSR: | |
case AOT_AAC_LTP: | |
case AOT_ER_AAC_LC: | |
case AOT_ER_AAC_LD: | |
if ((ret = decode_ga_specific_config(ac, avctx, gb, get_bit_alignment, | |
m4ac, m4ac->chan_config)) < 0) | |
return ret; | |
break; | |
case AOT_ER_AAC_ELD: | |
if ((ret = decode_eld_specific_config(ac, avctx, gb, | |
m4ac, m4ac->chan_config)) < 0) | |
return ret; | |
break; | |
default: | |
avpriv_report_missing_feature(avctx, | |
"Audio object type %s%d", | |
m4ac->sbr == 1 ? "SBR+" : "", | |
m4ac->object_type); | |
return AVERROR(ENOSYS); | |
} | |
ff_dlog(avctx, | |
"AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", | |
m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, | |
m4ac->sample_rate, m4ac->sbr, | |
m4ac->ps); | |
return get_bits_count(gb); | |
} | |
static int decode_audio_specific_config(AACContext *ac, | |
AVCodecContext *avctx, | |
MPEG4AudioConfig *m4ac, | |
const uint8_t *data, int64_t bit_size, | |
int sync_extension) | |
{ | |
int i, ret; | |
GetBitContext gb; | |
if (bit_size < 0 || bit_size > INT_MAX) { | |
av_log(avctx, AV_LOG_ERROR, "Audio specific config size is invalid\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
ff_dlog(avctx, "audio specific config size %d\n", (int)bit_size >> 3); | |
for (i = 0; i < bit_size >> 3; i++) | |
ff_dlog(avctx, "%02x ", data[i]); | |
ff_dlog(avctx, "\n"); | |
if ((ret = init_get_bits(&gb, data, bit_size)) < 0) | |
return ret; | |
return decode_audio_specific_config_gb(ac, avctx, m4ac, &gb, 0, | |
sync_extension); | |
} | |
/** | |
* linear congruential pseudorandom number generator | |
* | |
* @param previous_val pointer to the current state of the generator | |
* | |
* @return Returns a 32-bit pseudorandom integer | |
*/ | |
static av_always_inline int lcg_random(unsigned previous_val) | |
{ | |
union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; | |
return v.s; | |
} | |
static void reset_all_predictors(PredictorState *ps) | |
{ | |
int i; | |
for (i = 0; i < MAX_PREDICTORS; i++) | |
reset_predict_state(&ps[i]); | |
} | |
static int sample_rate_idx (int rate) | |
{ | |
if (92017 <= rate) return 0; | |
else if (75132 <= rate) return 1; | |
else if (55426 <= rate) return 2; | |
else if (46009 <= rate) return 3; | |
else if (37566 <= rate) return 4; | |
else if (27713 <= rate) return 5; | |
else if (23004 <= rate) return 6; | |
else if (18783 <= rate) return 7; | |
else if (13856 <= rate) return 8; | |
else if (11502 <= rate) return 9; | |
else if (9391 <= rate) return 10; | |
else return 11; | |
} | |
static void reset_predictor_group(PredictorState *ps, int group_num) | |
{ | |
int i; | |
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) | |
reset_predict_state(&ps[i]); | |
} | |
static void aacdec_init(AACContext *ac); | |
static av_cold void aac_static_table_init(void) | |
{ | |
static VLCElem vlc_buf[304 + 270 + 550 + 300 + 328 + | |
294 + 306 + 268 + 510 + 366 + 462]; | |
for (unsigned i = 0, offset = 0; i < 11; i++) { | |
vlc_spectral[i].table = &vlc_buf[offset]; | |
vlc_spectral[i].table_allocated = FF_ARRAY_ELEMS(vlc_buf) - offset; | |
ff_init_vlc_sparse(&vlc_spectral[i], 8, ff_aac_spectral_sizes[i], | |
ff_aac_spectral_bits[i], sizeof(ff_aac_spectral_bits[i][0]), | |
sizeof(ff_aac_spectral_bits[i][0]), | |
ff_aac_spectral_codes[i], sizeof(ff_aac_spectral_codes[i][0]), | |
sizeof(ff_aac_spectral_codes[i][0]), | |
ff_aac_codebook_vector_idx[i], sizeof(ff_aac_codebook_vector_idx[i][0]), | |
sizeof(ff_aac_codebook_vector_idx[i][0]), | |
INIT_VLC_STATIC_OVERLONG); | |
offset += vlc_spectral[i].table_size; | |
} | |
AAC_RENAME(ff_aac_sbr_init)(); | |
ff_aac_tableinit(); | |
INIT_VLC_STATIC(&vlc_scalefactors, 7, | |
FF_ARRAY_ELEMS(ff_aac_scalefactor_code), | |
ff_aac_scalefactor_bits, | |
sizeof(ff_aac_scalefactor_bits[0]), | |
sizeof(ff_aac_scalefactor_bits[0]), | |
ff_aac_scalefactor_code, | |
sizeof(ff_aac_scalefactor_code[0]), | |
sizeof(ff_aac_scalefactor_code[0]), | |
352); | |
// window initialization | |
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME(aac_kbd_long_960), 4.0, 960); | |
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME(aac_kbd_short_120), 6.0, 120); | |
AAC_RENAME(ff_sine_window_init)(AAC_RENAME(sine_960), 960); | |
AAC_RENAME(ff_sine_window_init)(AAC_RENAME(sine_120), 120); | |
AAC_RENAME(ff_init_ff_sine_windows)(9); | |
ff_aac_float_common_init(); | |
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME2(aac_kbd_long_1024), 4.0, 1024); | |
AAC_RENAME(ff_kbd_window_init)(AAC_RENAME2(aac_kbd_short_128), 6.0, 128); | |
init_sine_windows_fixed(); | |
AAC_RENAME(ff_cbrt_tableinit)(); | |
} | |
static AVOnce aac_table_init = AV_ONCE_INIT; | |
static av_cold int aac_decode_init(AVCodecContext *avctx) | |
{ | |
float scale; | |
AACContext *ac = avctx->priv_data; | |
int ret; | |
if (avctx->sample_rate > 96000) | |
return AVERROR_INVALIDDATA; | |
ret = ff_thread_once(&aac_table_init, &aac_static_table_init); | |
if (ret != 0) | |
return AVERROR_UNKNOWN; | |
ac->avctx = avctx; | |
ac->oc[1].m4ac.sample_rate = avctx->sample_rate; | |
aacdec_init(ac); | |
avctx->sample_fmt = AV_SAMPLE_FMT_S32P; | |
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; | |
if (avctx->extradata_size > 0) { | |
if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, | |
avctx->extradata, | |
avctx->extradata_size * 8LL, | |
1)) < 0) | |
return ret; | |
} else { | |
int sr, i; | |
uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
int layout_map_tags; | |
sr = sample_rate_idx(avctx->sample_rate); | |
ac->oc[1].m4ac.sampling_index = sr; | |
ac->oc[1].m4ac.channels = avctx->ch_layout.nb_channels; | |
ac->oc[1].m4ac.sbr = -1; | |
ac->oc[1].m4ac.ps = -1; | |
for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++) | |
if (ff_mpeg4audio_channels[i] == avctx->ch_layout.nb_channels) | |
break; | |
if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) { | |
i = 0; | |
} | |
ac->oc[1].m4ac.chan_config = i; | |
if (ac->oc[1].m4ac.chan_config) { | |
int ret = set_default_channel_config(ac, avctx, layout_map, | |
&layout_map_tags, ac->oc[1].m4ac.chan_config); | |
if (!ret) | |
output_configure(ac, layout_map, layout_map_tags, | |
OC_GLOBAL_HDR, 0); | |
else if (avctx->err_recognition & AV_EF_EXPLODE) | |
return AVERROR_INVALIDDATA; | |
} | |
} | |
if (avctx->ch_layout.nb_channels > MAX_CHANNELS) { | |
av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
ac->fdsp = avpriv_alloc_fixed_dsp(avctx->flags & AV_CODEC_FLAG_BITEXACT); | |
ac->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); | |
if (!ac->fdsp) { | |
return AVERROR(ENOMEM); | |
} | |
ac->random_state = 0x1f2e3d4c; | |
MDCT_INIT(ac->mdct120, ac->mdct120_fn, 120, TX_SCALE(1.0/120)) | |
MDCT_INIT(ac->mdct128, ac->mdct128_fn, 128, TX_SCALE(1.0/128)) | |
MDCT_INIT(ac->mdct480, ac->mdct480_fn, 480, TX_SCALE(1.0/480)) | |
MDCT_INIT(ac->mdct512, ac->mdct512_fn, 512, TX_SCALE(1.0/512)) | |
MDCT_INIT(ac->mdct960, ac->mdct960_fn, 960, TX_SCALE(1.0/960)) | |
MDCT_INIT(ac->mdct1024, ac->mdct1024_fn, 1024, TX_SCALE(1.0/1024)) | |
/* LTP forward MDCT */ | |
scale = USE_FIXED ? -1.0 : -32786.0*2 + 36; | |
ret = av_tx_init(&ac->mdct_ltp, &ac->mdct_ltp_fn, TX_TYPE, 0, 1024, &scale, 0); | |
if (ret < 0) | |
return ret; | |
return 0; | |
} | |
/** | |
* Skip data_stream_element; reference: table 4.10. | |
*/ | |
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb) | |
{ | |
int byte_align = get_bits1(gb); | |
int count = get_bits(gb, 8); | |
if (count == 255) | |
count += get_bits(gb, 8); | |
if (byte_align) | |
align_get_bits(gb); | |
if (get_bits_left(gb) < 8 * count) { | |
av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err); | |
return AVERROR_INVALIDDATA; | |
} | |
skip_bits_long(gb, 8 * count); | |
return 0; | |
} | |
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, | |
GetBitContext *gb) | |
{ | |
int sfb; | |
if (get_bits1(gb)) { | |
ics->predictor_reset_group = get_bits(gb, 5); | |
if (ics->predictor_reset_group == 0 || | |
ics->predictor_reset_group > 30) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Invalid Predictor Reset Group.\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
} | |
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) { | |
ics->prediction_used[sfb] = get_bits1(gb); | |
} | |
return 0; | |
} | |
/** | |
* Decode Long Term Prediction data; reference: table 4.xx. | |
*/ | |
static void decode_ltp(LongTermPrediction *ltp, | |
GetBitContext *gb, uint8_t max_sfb) | |
{ | |
int sfb; | |
ltp->lag = get_bits(gb, 11); | |
ltp->coef = ltp_coef[get_bits(gb, 3)]; | |
for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++) | |
ltp->used[sfb] = get_bits1(gb); | |
} | |
/** | |
* Decode Individual Channel Stream info; reference: table 4.6. | |
*/ | |
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, | |
GetBitContext *gb) | |
{ | |
const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; | |
const int aot = m4ac->object_type; | |
const int sampling_index = m4ac->sampling_index; | |
int ret_fail = AVERROR_INVALIDDATA; | |
if (aot != AOT_ER_AAC_ELD) { | |
if (get_bits1(gb)) { | |
av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n"); | |
if (ac->avctx->err_recognition & AV_EF_BITSTREAM) | |
return AVERROR_INVALIDDATA; | |
} | |
ics->window_sequence[1] = ics->window_sequence[0]; | |
ics->window_sequence[0] = get_bits(gb, 2); | |
if (aot == AOT_ER_AAC_LD && | |
ics->window_sequence[0] != ONLY_LONG_SEQUENCE) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"AAC LD is only defined for ONLY_LONG_SEQUENCE but " | |
"window sequence %d found.\n", ics->window_sequence[0]); | |
ics->window_sequence[0] = ONLY_LONG_SEQUENCE; | |
return AVERROR_INVALIDDATA; | |
} | |
ics->use_kb_window[1] = ics->use_kb_window[0]; | |
ics->use_kb_window[0] = get_bits1(gb); | |
} | |
ics->num_window_groups = 1; | |
ics->group_len[0] = 1; | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
int i; | |
ics->max_sfb = get_bits(gb, 4); | |
for (i = 0; i < 7; i++) { | |
if (get_bits1(gb)) { | |
ics->group_len[ics->num_window_groups - 1]++; | |
} else { | |
ics->num_window_groups++; | |
ics->group_len[ics->num_window_groups - 1] = 1; | |
} | |
} | |
ics->num_windows = 8; | |
if (m4ac->frame_length_short) { | |
ics->swb_offset = ff_swb_offset_120[sampling_index]; | |
ics->num_swb = ff_aac_num_swb_120[sampling_index]; | |
} else { | |
ics->swb_offset = ff_swb_offset_128[sampling_index]; | |
ics->num_swb = ff_aac_num_swb_128[sampling_index]; | |
} | |
ics->tns_max_bands = ff_tns_max_bands_128[sampling_index]; | |
ics->predictor_present = 0; | |
} else { | |
ics->max_sfb = get_bits(gb, 6); | |
ics->num_windows = 1; | |
if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) { | |
if (m4ac->frame_length_short) { | |
ics->swb_offset = ff_swb_offset_480[sampling_index]; | |
ics->num_swb = ff_aac_num_swb_480[sampling_index]; | |
ics->tns_max_bands = ff_tns_max_bands_480[sampling_index]; | |
} else { | |
ics->swb_offset = ff_swb_offset_512[sampling_index]; | |
ics->num_swb = ff_aac_num_swb_512[sampling_index]; | |
ics->tns_max_bands = ff_tns_max_bands_512[sampling_index]; | |
} | |
if (!ics->num_swb || !ics->swb_offset) { | |
ret_fail = AVERROR_BUG; | |
goto fail; | |
} | |
} else { | |
if (m4ac->frame_length_short) { | |
ics->num_swb = ff_aac_num_swb_960[sampling_index]; | |
ics->swb_offset = ff_swb_offset_960[sampling_index]; | |
} else { | |
ics->num_swb = ff_aac_num_swb_1024[sampling_index]; | |
ics->swb_offset = ff_swb_offset_1024[sampling_index]; | |
} | |
ics->tns_max_bands = ff_tns_max_bands_1024[sampling_index]; | |
} | |
if (aot != AOT_ER_AAC_ELD) { | |
ics->predictor_present = get_bits1(gb); | |
ics->predictor_reset_group = 0; | |
} | |
if (ics->predictor_present) { | |
if (aot == AOT_AAC_MAIN) { | |
if (decode_prediction(ac, ics, gb)) { | |
goto fail; | |
} | |
} else if (aot == AOT_AAC_LC || | |
aot == AOT_ER_AAC_LC) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Prediction is not allowed in AAC-LC.\n"); | |
goto fail; | |
} else { | |
if (aot == AOT_ER_AAC_LD) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"LTP in ER AAC LD not yet implemented.\n"); | |
ret_fail = AVERROR_PATCHWELCOME; | |
goto fail; | |
} | |
if ((ics->ltp.present = get_bits(gb, 1))) | |
decode_ltp(&ics->ltp, gb, ics->max_sfb); | |
} | |
} | |
} | |
if (ics->max_sfb > ics->num_swb) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Number of scalefactor bands in group (%d) " | |
"exceeds limit (%d).\n", | |
ics->max_sfb, ics->num_swb); | |
goto fail; | |
} | |
return 0; | |
fail: | |
ics->max_sfb = 0; | |
return ret_fail; | |
} | |
/** | |
* Decode band types (section_data payload); reference: table 4.46. | |
* | |
* @param band_type array of the used band type | |
* @param band_type_run_end array of the last scalefactor band of a band type run | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_band_types(AACContext *ac, enum BandType band_type[120], | |
int band_type_run_end[120], GetBitContext *gb, | |
IndividualChannelStream *ics) | |
{ | |
int g, idx = 0; | |
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; | |
for (g = 0; g < ics->num_window_groups; g++) { | |
int k = 0; | |
while (k < ics->max_sfb) { | |
uint8_t sect_end = k; | |
int sect_len_incr; | |
int sect_band_type = get_bits(gb, 4); | |
if (sect_band_type == 12) { | |
av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
do { | |
sect_len_incr = get_bits(gb, bits); | |
sect_end += sect_len_incr; | |
if (get_bits_left(gb) < 0) { | |
av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err); | |
return AVERROR_INVALIDDATA; | |
} | |
if (sect_end > ics->max_sfb) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Number of bands (%d) exceeds limit (%d).\n", | |
sect_end, ics->max_sfb); | |
return AVERROR_INVALIDDATA; | |
} | |
} while (sect_len_incr == (1 << bits) - 1); | |
for (; k < sect_end; k++) { | |
band_type [idx] = sect_band_type; | |
band_type_run_end[idx++] = sect_end; | |
} | |
} | |
} | |
return 0; | |
} | |
/** | |
* Decode scalefactors; reference: table 4.47. | |
* | |
* @param global_gain first scalefactor value as scalefactors are differentially coded | |
* @param band_type array of the used band type | |
* @param band_type_run_end array of the last scalefactor band of a band type run | |
* @param sf array of scalefactors or intensity stereo positions | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_scalefactors(AACContext *ac, INTFLOAT sf[120], GetBitContext *gb, | |
unsigned int global_gain, | |
IndividualChannelStream *ics, | |
enum BandType band_type[120], | |
int band_type_run_end[120]) | |
{ | |
int g, i, idx = 0; | |
int offset[3] = { global_gain, global_gain - NOISE_OFFSET, 0 }; | |
int clipped_offset; | |
int noise_flag = 1; | |
for (g = 0; g < ics->num_window_groups; g++) { | |
for (i = 0; i < ics->max_sfb;) { | |
int run_end = band_type_run_end[idx]; | |
if (band_type[idx] == ZERO_BT) { | |
for (; i < run_end; i++, idx++) | |
sf[idx] = FIXR(0.); | |
} else if ((band_type[idx] == INTENSITY_BT) || | |
(band_type[idx] == INTENSITY_BT2)) { | |
for (; i < run_end; i++, idx++) { | |
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; | |
clipped_offset = av_clip(offset[2], -155, 100); | |
if (offset[2] != clipped_offset) { | |
avpriv_request_sample(ac->avctx, | |
"If you heard an audible artifact, there may be a bug in the decoder. " | |
"Clipped intensity stereo position (%d -> %d)", | |
offset[2], clipped_offset); | |
} | |
sf[idx] = 100 - clipped_offset; | |
sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO]; | |
} | |
} else if (band_type[idx] == NOISE_BT) { | |
for (; i < run_end; i++, idx++) { | |
if (noise_flag-- > 0) | |
offset[1] += get_bits(gb, NOISE_PRE_BITS) - NOISE_PRE; | |
else | |
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; | |
clipped_offset = av_clip(offset[1], -100, 155); | |
if (offset[1] != clipped_offset) { | |
avpriv_request_sample(ac->avctx, | |
"If you heard an audible artifact, there may be a bug in the decoder. " | |
"Clipped noise gain (%d -> %d)", | |
offset[1], clipped_offset); | |
} | |
sf[idx] = -(100 + clipped_offset); | |
sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO]; | |
} | |
} else { | |
for (; i < run_end; i++, idx++) { | |
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; | |
if (offset[0] > 255U) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Scalefactor (%d) out of range.\n", offset[0]); | |
return AVERROR_INVALIDDATA; | |
} | |
sf[idx] = -offset[0]; | |
sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO]; | |
} | |
} | |
} | |
} | |
return 0; | |
} | |
/** | |
* Decode pulse data; reference: table 4.7. | |
*/ | |
static int decode_pulses(Pulse *pulse, GetBitContext *gb, | |
const uint16_t *swb_offset, int num_swb) | |
{ | |
int i, pulse_swb; | |
pulse->num_pulse = get_bits(gb, 2) + 1; | |
pulse_swb = get_bits(gb, 6); | |
if (pulse_swb >= num_swb) | |
return -1; | |
pulse->pos[0] = swb_offset[pulse_swb]; | |
pulse->pos[0] += get_bits(gb, 5); | |
if (pulse->pos[0] >= swb_offset[num_swb]) | |
return -1; | |
pulse->amp[0] = get_bits(gb, 4); | |
for (i = 1; i < pulse->num_pulse; i++) { | |
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; | |
if (pulse->pos[i] >= swb_offset[num_swb]) | |
return -1; | |
pulse->amp[i] = get_bits(gb, 4); | |
} | |
return 0; | |
} | |
/** | |
* Decode Temporal Noise Shaping data; reference: table 4.48. | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, | |
GetBitContext *gb, const IndividualChannelStream *ics) | |
{ | |
int w, filt, i, coef_len, coef_res, coef_compress; | |
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; | |
const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; | |
for (w = 0; w < ics->num_windows; w++) { | |
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { | |
coef_res = get_bits1(gb); | |
for (filt = 0; filt < tns->n_filt[w]; filt++) { | |
int tmp2_idx; | |
tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); | |
if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"TNS filter order %d is greater than maximum %d.\n", | |
tns->order[w][filt], tns_max_order); | |
tns->order[w][filt] = 0; | |
return AVERROR_INVALIDDATA; | |
} | |
if (tns->order[w][filt]) { | |
tns->direction[w][filt] = get_bits1(gb); | |
coef_compress = get_bits1(gb); | |
coef_len = coef_res + 3 - coef_compress; | |
tmp2_idx = 2 * coef_compress + coef_res; | |
for (i = 0; i < tns->order[w][filt]; i++) | |
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; | |
} | |
} | |
} | |
} | |
return 0; | |
} | |
/** | |
* Decode Mid/Side data; reference: table 4.54. | |
* | |
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; | |
* [1] mask is decoded from bitstream; [2] mask is all 1s; | |
* [3] reserved for scalable AAC | |
*/ | |
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, | |
int ms_present) | |
{ | |
int idx; | |
int max_idx = cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; | |
if (ms_present == 1) { | |
for (idx = 0; idx < max_idx; idx++) | |
cpe->ms_mask[idx] = get_bits1(gb); | |
} else if (ms_present == 2) { | |
memset(cpe->ms_mask, 1, max_idx * sizeof(cpe->ms_mask[0])); | |
} | |
} | |
/** | |
* Decode spectral data; reference: table 4.50. | |
* Dequantize and scale spectral data; reference: 4.6.3.3. | |
* | |
* @param coef array of dequantized, scaled spectral data | |
* @param sf array of scalefactors or intensity stereo positions | |
* @param pulse_present set if pulses are present | |
* @param pulse pointer to pulse data struct | |
* @param band_type array of the used band type | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_spectrum_and_dequant(AACContext *ac, INTFLOAT coef[1024], | |
GetBitContext *gb, const INTFLOAT sf[120], | |
int pulse_present, const Pulse *pulse, | |
const IndividualChannelStream *ics, | |
enum BandType band_type[120]) | |
{ | |
int i, k, g, idx = 0; | |
const int c = 1024 / ics->num_windows; | |
const uint16_t *offsets = ics->swb_offset; | |
INTFLOAT *coef_base = coef; | |
for (g = 0; g < ics->num_windows; g++) | |
memset(coef + g * 128 + offsets[ics->max_sfb], 0, | |
sizeof(INTFLOAT) * (c - offsets[ics->max_sfb])); | |
for (g = 0; g < ics->num_window_groups; g++) { | |
unsigned g_len = ics->group_len[g]; | |
for (i = 0; i < ics->max_sfb; i++, idx++) { | |
const unsigned cbt_m1 = band_type[idx] - 1; | |
INTFLOAT *cfo = coef + offsets[i]; | |
int off_len = offsets[i + 1] - offsets[i]; | |
int group; | |
if (cbt_m1 >= INTENSITY_BT2 - 1) { | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
memset(cfo, 0, off_len * sizeof(*cfo)); | |
} | |
} else if (cbt_m1 == NOISE_BT - 1) { | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
INTFLOAT band_energy; | |
for (k = 0; k < off_len; k++) { | |
ac->random_state = lcg_random(ac->random_state); | |
cfo[k] = ac->random_state >> 3; | |
} | |
band_energy = ac->fdsp->scalarproduct_fixed(cfo, cfo, off_len); | |
band_energy = fixed_sqrt(band_energy, 31); | |
noise_scale(cfo, sf[idx], band_energy, off_len); | |
float scale; | |
for (k = 0; k < off_len; k++) { | |
ac->random_state = lcg_random(ac->random_state); | |
cfo[k] = ac->random_state; | |
} | |
band_energy = ac->fdsp->scalarproduct_float(cfo, cfo, off_len); | |
scale = sf[idx] / sqrtf(band_energy); | |
ac->fdsp->vector_fmul_scalar(cfo, cfo, scale, off_len); | |
} | |
} else { | |
const float *vq = ff_aac_codebook_vector_vals[cbt_m1]; | |
const VLCElem *vlc_tab = vlc_spectral[cbt_m1].table; | |
OPEN_READER(re, gb); | |
switch (cbt_m1 >> 1) { | |
case 0: | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
INTFLOAT *cf = cfo; | |
int len = off_len; | |
do { | |
int code; | |
unsigned cb_idx; | |
UPDATE_CACHE(re, gb); | |
GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
cb_idx = code; | |
cf = DEC_SQUAD(cf, cb_idx); | |
cf = VMUL4(cf, vq, cb_idx, sf + idx); | |
} while (len -= 4); | |
} | |
break; | |
case 1: | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
INTFLOAT *cf = cfo; | |
int len = off_len; | |
do { | |
int code; | |
unsigned nnz; | |
unsigned cb_idx; | |
uint32_t bits; | |
UPDATE_CACHE(re, gb); | |
GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
cb_idx = code; | |
nnz = cb_idx >> 8 & 15; | |
bits = nnz ? GET_CACHE(re, gb) : 0; | |
LAST_SKIP_BITS(re, gb, nnz); | |
cf = DEC_UQUAD(cf, cb_idx, bits); | |
cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx); | |
} while (len -= 4); | |
} | |
break; | |
case 2: | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
INTFLOAT *cf = cfo; | |
int len = off_len; | |
do { | |
int code; | |
unsigned cb_idx; | |
UPDATE_CACHE(re, gb); | |
GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
cb_idx = code; | |
cf = DEC_SPAIR(cf, cb_idx); | |
cf = VMUL2(cf, vq, cb_idx, sf + idx); | |
} while (len -= 2); | |
} | |
break; | |
case 3: | |
case 4: | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
INTFLOAT *cf = cfo; | |
int len = off_len; | |
do { | |
int code; | |
unsigned nnz; | |
unsigned cb_idx; | |
unsigned sign; | |
UPDATE_CACHE(re, gb); | |
GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
cb_idx = code; | |
nnz = cb_idx >> 8 & 15; | |
sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0; | |
LAST_SKIP_BITS(re, gb, nnz); | |
cf = DEC_UPAIR(cf, cb_idx, sign); | |
cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx); | |
} while (len -= 2); | |
} | |
break; | |
default: | |
for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { | |
int *icf = cfo; | |
int v; | |
float *cf = cfo; | |
uint32_t *icf = (uint32_t *) cf; | |
int len = off_len; | |
do { | |
int code; | |
unsigned nzt, nnz; | |
unsigned cb_idx; | |
uint32_t bits; | |
int j; | |
UPDATE_CACHE(re, gb); | |
GET_VLC(code, re, gb, vlc_tab, 8, 2); | |
cb_idx = code; | |
if (cb_idx == 0x0000) { | |
*icf++ = 0; | |
*icf++ = 0; | |
continue; | |
} | |
nnz = cb_idx >> 12; | |
nzt = cb_idx >> 8; | |
bits = SHOW_UBITS(re, gb, nnz) << (32-nnz); | |
LAST_SKIP_BITS(re, gb, nnz); | |
for (j = 0; j < 2; j++) { | |
if (nzt & 1<<j) { | |
uint32_t b; | |
int n; | |
/* The total length of escape_sequence must be < 22 bits according | |
to the specification (i.e. max is 111111110xxxxxxxxxxxx). */ | |
UPDATE_CACHE(re, gb); | |
b = GET_CACHE(re, gb); | |
b = 31 - av_log2(~b); | |
if (b > 8) { | |
av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
SKIP_BITS(re, gb, b + 1); | |
b += 4; | |
n = (1 << b) + SHOW_UBITS(re, gb, b); | |
LAST_SKIP_BITS(re, gb, b); | |
v = n; | |
if (bits & 1U<<31) | |
v = -v; | |
*icf++ = v; | |
*icf++ = ff_cbrt_tab[n] | (bits & 1U<<31); | |
bits <<= 1; | |
} else { | |
v = cb_idx & 15; | |
if (bits & 1U<<31) | |
v = -v; | |
*icf++ = v; | |
unsigned v = ((const uint32_t*)vq)[cb_idx & 15]; | |
*icf++ = (bits & 1U<<31) | v; | |
bits <<= !!v; | |
} | |
cb_idx >>= 4; | |
} | |
} while (len -= 2); | |
ac->fdsp->vector_fmul_scalar(cfo, cfo, sf[idx], off_len); | |
} | |
} | |
CLOSE_READER(re, gb); | |
} | |
} | |
coef += g_len << 7; | |
} | |
if (pulse_present) { | |
idx = 0; | |
for (i = 0; i < pulse->num_pulse; i++) { | |
INTFLOAT co = coef_base[ pulse->pos[i] ]; | |
while (offsets[idx + 1] <= pulse->pos[i]) | |
idx++; | |
if (band_type[idx] != NOISE_BT && sf[idx]) { | |
INTFLOAT ico = -pulse->amp[i]; | |
if (co) { | |
ico = co + (co > 0 ? -ico : ico); | |
} | |
coef_base[ pulse->pos[i] ] = ico; | |
if (co) { | |
co /= sf[idx]; | |
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico); | |
} | |
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; | |
} | |
} | |
} | |
coef = coef_base; | |
idx = 0; | |
for (g = 0; g < ics->num_window_groups; g++) { | |
unsigned g_len = ics->group_len[g]; | |
for (i = 0; i < ics->max_sfb; i++, idx++) { | |
const unsigned cbt_m1 = band_type[idx] - 1; | |
int *cfo = coef + offsets[i]; | |
int off_len = offsets[i + 1] - offsets[i]; | |
int group; | |
if (cbt_m1 < NOISE_BT - 1) { | |
for (group = 0; group < (int)g_len; group++, cfo+=128) { | |
ac->vector_pow43(cfo, off_len); | |
ac->subband_scale(cfo, cfo, sf[idx], 34, off_len, ac->avctx); | |
} | |
} | |
} | |
coef += g_len << 7; | |
} | |
return 0; | |
} | |
/** | |
* Apply AAC-Main style frequency domain prediction. | |
*/ | |
static void apply_prediction(AACContext *ac, SingleChannelElement *sce) | |
{ | |
int sfb, k; | |
if (!sce->ics.predictor_initialized) { | |
reset_all_predictors(sce->predictor_state); | |
sce->ics.predictor_initialized = 1; | |
} | |
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { | |
for (sfb = 0; | |
sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; | |
sfb++) { | |
for (k = sce->ics.swb_offset[sfb]; | |
k < sce->ics.swb_offset[sfb + 1]; | |
k++) { | |
predict(&sce->predictor_state[k], &sce->coeffs[k], | |
sce->ics.predictor_present && | |
sce->ics.prediction_used[sfb]); | |
} | |
} | |
if (sce->ics.predictor_reset_group) | |
reset_predictor_group(sce->predictor_state, | |
sce->ics.predictor_reset_group); | |
} else | |
reset_all_predictors(sce->predictor_state); | |
} | |
static void decode_gain_control(SingleChannelElement * sce, GetBitContext * gb) | |
{ | |
// wd_num, wd_test, aloc_size | |
static const uint8_t gain_mode[4][3] = { | |
{1, 0, 5}, // ONLY_LONG_SEQUENCE = 0, | |
{2, 1, 2}, // LONG_START_SEQUENCE, | |
{8, 0, 2}, // EIGHT_SHORT_SEQUENCE, | |
{2, 1, 5}, // LONG_STOP_SEQUENCE | |
}; | |
const int mode = sce->ics.window_sequence[0]; | |
uint8_t bd, wd, ad; | |
// FIXME: Store the gain control data on |sce| and do something with it. | |
uint8_t max_band = get_bits(gb, 2); | |
for (bd = 0; bd < max_band; bd++) { | |
for (wd = 0; wd < gain_mode[mode][0]; wd++) { | |
uint8_t adjust_num = get_bits(gb, 3); | |
for (ad = 0; ad < adjust_num; ad++) { | |
skip_bits(gb, 4 + ((wd == 0 && gain_mode[mode][1]) | |
? 4 | |
: gain_mode[mode][2])); | |
} | |
} | |
} | |
} | |
/** | |
* Decode an individual_channel_stream payload; reference: table 4.44. | |
* | |
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. | |
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_ics(AACContext *ac, SingleChannelElement *sce, | |
GetBitContext *gb, int common_window, int scale_flag) | |
{ | |
Pulse pulse; | |
TemporalNoiseShaping *tns = &sce->tns; | |
IndividualChannelStream *ics = &sce->ics; | |
INTFLOAT *out = sce->coeffs; | |
int global_gain, eld_syntax, er_syntax, pulse_present = 0; | |
int ret; | |
eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; | |
er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC || | |
ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP || | |
ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD || | |
ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; | |
/* This assignment is to silence a GCC warning about the variable being used | |
* uninitialized when in fact it always is. | |
*/ | |
pulse.num_pulse = 0; | |
global_gain = get_bits(gb, 8); | |
if (!common_window && !scale_flag) { | |
ret = decode_ics_info(ac, ics, gb); | |
if (ret < 0) | |
goto fail; | |
} | |
if ((ret = decode_band_types(ac, sce->band_type, | |
sce->band_type_run_end, gb, ics)) < 0) | |
goto fail; | |
if ((ret = decode_scalefactors(ac, sce->sf, gb, global_gain, ics, | |
sce->band_type, sce->band_type_run_end)) < 0) | |
goto fail; | |
pulse_present = 0; | |
if (!scale_flag) { | |
if (!eld_syntax && (pulse_present = get_bits1(gb))) { | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Pulse tool not allowed in eight short sequence.\n"); | |
ret = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"Pulse data corrupt or invalid.\n"); | |
ret = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
} | |
tns->present = get_bits1(gb); | |
if (tns->present && !er_syntax) { | |
ret = decode_tns(ac, tns, gb, ics); | |
if (ret < 0) | |
goto fail; | |
} | |
if (!eld_syntax && get_bits1(gb)) { | |
decode_gain_control(sce, gb); | |
if (!ac->warned_gain_control) { | |
avpriv_report_missing_feature(ac->avctx, "Gain control"); | |
ac->warned_gain_control = 1; | |
} | |
} | |
// I see no textual basis in the spec for this occurring after SSR gain | |
// control, but this is what both reference and real implmentations do | |
if (tns->present && er_syntax) { | |
ret = decode_tns(ac, tns, gb, ics); | |
if (ret < 0) | |
goto fail; | |
} | |
} | |
ret = decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, | |
&pulse, ics, sce->band_type); | |
if (ret < 0) | |
goto fail; | |
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window) | |
apply_prediction(ac, sce); | |
return 0; | |
fail: | |
tns->present = 0; | |
return ret; | |
} | |
/** | |
* Mid/Side stereo decoding; reference: 4.6.8.1.3. | |
*/ | |
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe) | |
{ | |
const IndividualChannelStream *ics = &cpe->ch[0].ics; | |
INTFLOAT *ch0 = cpe->ch[0].coeffs; | |
INTFLOAT *ch1 = cpe->ch[1].coeffs; | |
int g, i, group, idx = 0; | |
const uint16_t *offsets = ics->swb_offset; | |
for (g = 0; g < ics->num_window_groups; g++) { | |
for (i = 0; i < ics->max_sfb; i++, idx++) { | |
if (cpe->ms_mask[idx] && | |
cpe->ch[0].band_type[idx] < NOISE_BT && | |
cpe->ch[1].band_type[idx] < NOISE_BT) { | |
for (group = 0; group < ics->group_len[g]; group++) { | |
ac->fdsp->butterflies_fixed(ch0 + group * 128 + offsets[i], | |
ch1 + group * 128 + offsets[i], | |
offsets[i+1] - offsets[i]); | |
for (group = 0; group < ics->group_len[g]; group++) { | |
ac->fdsp->butterflies_float(ch0 + group * 128 + offsets[i], | |
ch1 + group * 128 + offsets[i], | |
offsets[i+1] - offsets[i]); | |
} | |
} | |
} | |
ch0 += ics->group_len[g] * 128; | |
ch1 += ics->group_len[g] * 128; | |
} | |
} | |
/** | |
* intensity stereo decoding; reference: 4.6.8.2.3 | |
* | |
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; | |
* [1] mask is decoded from bitstream; [2] mask is all 1s; | |
* [3] reserved for scalable AAC | |
*/ | |
static void apply_intensity_stereo(AACContext *ac, | |
ChannelElement *cpe, int ms_present) | |
{ | |
const IndividualChannelStream *ics = &cpe->ch[1].ics; | |
SingleChannelElement *sce1 = &cpe->ch[1]; | |
INTFLOAT *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; | |
const uint16_t *offsets = ics->swb_offset; | |
int g, group, i, idx = 0; | |
int c; | |
INTFLOAT scale; | |
for (g = 0; g < ics->num_window_groups; g++) { | |
for (i = 0; i < ics->max_sfb;) { | |
if (sce1->band_type[idx] == INTENSITY_BT || | |
sce1->band_type[idx] == INTENSITY_BT2) { | |
const int bt_run_end = sce1->band_type_run_end[idx]; | |
for (; i < bt_run_end; i++, idx++) { | |
c = -1 + 2 * (sce1->band_type[idx] - 14); | |
if (ms_present) | |
c *= 1 - 2 * cpe->ms_mask[idx]; | |
scale = c * sce1->sf[idx]; | |
for (group = 0; group < ics->group_len[g]; group++) | |
ac->subband_scale(coef1 + group * 128 + offsets[i], | |
coef0 + group * 128 + offsets[i], | |
scale, | |
23, | |
offsets[i + 1] - offsets[i] ,ac->avctx); | |
ac->fdsp->vector_fmul_scalar(coef1 + group * 128 + offsets[i], | |
coef0 + group * 128 + offsets[i], | |
scale, | |
offsets[i + 1] - offsets[i]); | |
} | |
} else { | |
int bt_run_end = sce1->band_type_run_end[idx]; | |
idx += bt_run_end - i; | |
i = bt_run_end; | |
} | |
} | |
coef0 += ics->group_len[g] * 128; | |
coef1 += ics->group_len[g] * 128; | |
} | |
} | |
/** | |
* Decode a channel_pair_element; reference: table 4.4. | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe) | |
{ | |
int i, ret, common_window, ms_present = 0; | |
int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; | |
common_window = eld_syntax || get_bits1(gb); | |
if (common_window) { | |
if (decode_ics_info(ac, &cpe->ch[0].ics, gb)) | |
return AVERROR_INVALIDDATA; | |
i = cpe->ch[1].ics.use_kb_window[0]; | |
cpe->ch[1].ics = cpe->ch[0].ics; | |
cpe->ch[1].ics.use_kb_window[1] = i; | |
if (cpe->ch[1].ics.predictor_present && | |
(ac->oc[1].m4ac.object_type != AOT_AAC_MAIN)) | |
if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1))) | |
decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb); | |
ms_present = get_bits(gb, 2); | |
if (ms_present == 3) { | |
av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); | |
return AVERROR_INVALIDDATA; | |
} else if (ms_present) | |
decode_mid_side_stereo(cpe, gb, ms_present); | |
} | |
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) | |
return ret; | |
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) | |
return ret; | |
if (common_window) { | |
if (ms_present) | |
apply_mid_side_stereo(ac, cpe); | |
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { | |
apply_prediction(ac, &cpe->ch[0]); | |
apply_prediction(ac, &cpe->ch[1]); | |
} | |
} | |
apply_intensity_stereo(ac, cpe, ms_present); | |
return 0; | |
} | |
static const float cce_scale[] = { | |
1.09050773266525765921, //2^(1/8) | |
1.18920711500272106672, //2^(1/4) | |
M_SQRT2, | |
2, | |
}; | |
/** | |
* Decode coupling_channel_element; reference: table 4.8. | |
* | |
* @return Returns error status. 0 - OK, !0 - error | |
*/ | |
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che) | |
{ | |
int num_gain = 0; | |
int c, g, sfb, ret; | |
int sign; | |
INTFLOAT scale; | |
SingleChannelElement *sce = &che->ch[0]; | |
ChannelCoupling *coup = &che->coup; | |
coup->coupling_point = 2 * get_bits1(gb); | |
coup->num_coupled = get_bits(gb, 3); | |
for (c = 0; c <= coup->num_coupled; c++) { | |
num_gain++; | |
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; | |
coup->id_select[c] = get_bits(gb, 4); | |
if (coup->type[c] == TYPE_CPE) { | |
coup->ch_select[c] = get_bits(gb, 2); | |
if (coup->ch_select[c] == 3) | |
num_gain++; | |
} else | |
coup->ch_select[c] = 2; | |
} | |
coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1); | |
sign = get_bits(gb, 1); | |
scale = get_bits(gb, 2); | |
scale = cce_scale[get_bits(gb, 2)]; | |
if ((ret = decode_ics(ac, sce, gb, 0, 0))) | |
return ret; | |
for (c = 0; c < num_gain; c++) { | |
int idx = 0; | |
int cge = 1; | |
int gain = 0; | |
INTFLOAT gain_cache = FIXR10(1.); | |
if (c) { | |
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb); | |
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; | |
gain_cache = GET_GAIN(scale, gain); | |
if ((abs(gain_cache)-1024) >> 3 > 30) | |
return AVERROR(ERANGE); | |
} | |
if (coup->coupling_point == AFTER_IMDCT) { | |
coup->gain[c][0] = gain_cache; | |
} else { | |
for (g = 0; g < sce->ics.num_window_groups; g++) { | |
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { | |
if (sce->band_type[idx] != ZERO_BT) { | |
if (!cge) { | |
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; | |
if (t) { | |
int s = 1; | |
t = gain += t; | |
if (sign) { | |
s -= 2 * (t & 0x1); | |
t >>= 1; | |
} | |
gain_cache = GET_GAIN(scale, t) * s; | |
if ((abs(gain_cache)-1024) >> 3 > 30) | |
return AVERROR(ERANGE); | |
} | |
} | |
coup->gain[c][idx] = gain_cache; | |
} | |
} | |
} | |
} | |
} | |
return 0; | |
} | |
/** | |
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. | |
* | |
* @return Returns number of bytes consumed. | |
*/ | |
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, | |
GetBitContext *gb) | |
{ | |
int i; | |
int num_excl_chan = 0; | |
do { | |
for (i = 0; i < 7; i++) | |
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); | |
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); | |
return num_excl_chan / 7; | |
} | |
/** | |
* Decode dynamic range information; reference: table 4.52. | |
* | |
* @return Returns number of bytes consumed. | |
*/ | |
static int decode_dynamic_range(DynamicRangeControl *che_drc, | |
GetBitContext *gb) | |
{ | |
int n = 1; | |
int drc_num_bands = 1; | |
int i; | |
/* pce_tag_present? */ | |
if (get_bits1(gb)) { | |
che_drc->pce_instance_tag = get_bits(gb, 4); | |
skip_bits(gb, 4); // tag_reserved_bits | |
n++; | |
} | |
/* excluded_chns_present? */ | |
if (get_bits1(gb)) { | |
n += decode_drc_channel_exclusions(che_drc, gb); | |
} | |
/* drc_bands_present? */ | |
if (get_bits1(gb)) { | |
che_drc->band_incr = get_bits(gb, 4); | |
che_drc->interpolation_scheme = get_bits(gb, 4); | |
n++; | |
drc_num_bands += che_drc->band_incr; | |
for (i = 0; i < drc_num_bands; i++) { | |
che_drc->band_top[i] = get_bits(gb, 8); | |
n++; | |
} | |
} | |
/* prog_ref_level_present? */ | |
if (get_bits1(gb)) { | |
che_drc->prog_ref_level = get_bits(gb, 7); | |
skip_bits1(gb); // prog_ref_level_reserved_bits | |
n++; | |
} | |
for (i = 0; i < drc_num_bands; i++) { | |
che_drc->dyn_rng_sgn[i] = get_bits1(gb); | |
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); | |
n++; | |
} | |
return n; | |
} | |
static int decode_fill(AACContext *ac, GetBitContext *gb, int len) { | |
uint8_t buf[256]; | |
int i, major, minor; | |
if (len < 13+7*8) | |
goto unknown; | |
get_bits(gb, 13); len -= 13; | |
for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8) | |
buf[i] = get_bits(gb, 8); | |
buf[i] = 0; | |
if (ac->avctx->debug & FF_DEBUG_PICT_INFO) | |
av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf); | |
if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){ | |
ac->avctx->internal->skip_samples = 1024; | |
} | |
unknown: | |
skip_bits_long(gb, len); | |
return 0; | |
} | |
/** | |
* Decode extension data (incomplete); reference: table 4.51. | |
* | |
* @param cnt length of TYPE_FIL syntactic element in bytes | |
* | |
* @return Returns number of bytes consumed | |
*/ | |
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, | |
ChannelElement *che, enum RawDataBlockType elem_type) | |
{ | |
int crc_flag = 0; | |
int res = cnt; | |
int type = get_bits(gb, 4); | |
if (ac->avctx->debug & FF_DEBUG_STARTCODE) | |
av_log(ac->avctx, AV_LOG_DEBUG, "extension type: %d len:%d\n", type, cnt); | |
switch (type) { // extension type | |
case EXT_SBR_DATA_CRC: | |
crc_flag++; | |
case EXT_SBR_DATA: | |
if (!che) { | |
av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n"); | |
return res; | |
} else if (ac->oc[1].m4ac.frame_length_short) { | |
if (!ac->warned_960_sbr) | |
avpriv_report_missing_feature(ac->avctx, | |
"SBR with 960 frame length"); | |
ac->warned_960_sbr = 1; | |
skip_bits_long(gb, 8 * cnt - 4); | |
return res; | |
} else if (!ac->oc[1].m4ac.sbr) { | |
av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n"); | |
skip_bits_long(gb, 8 * cnt - 4); | |
return res; | |
} else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) { | |
av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n"); | |
skip_bits_long(gb, 8 * cnt - 4); | |
return res; | |
} else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && | |
ac->avctx->ch_layout.nb_channels == 1) { | |
ac->oc[1].m4ac.sbr = 1; | |
ac->oc[1].m4ac.ps = 1; | |
ac->avctx->profile = FF_PROFILE_AAC_HE_V2; | |
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, | |
ac->oc[1].status, 1); | |
} else { | |
ac->oc[1].m4ac.sbr = 1; | |
ac->avctx->profile = FF_PROFILE_AAC_HE; | |
} | |
res = AAC_RENAME(ff_decode_sbr_extension)(ac, &che->sbr, gb, crc_flag, cnt, elem_type); | |
if (ac->oc[1].m4ac.ps == 1 && !ac->warned_he_aac_mono) { | |
av_log(ac->avctx, AV_LOG_VERBOSE, "Treating HE-AAC mono as stereo.\n"); | |
ac->warned_he_aac_mono = 1; | |
} | |
break; | |
case EXT_DYNAMIC_RANGE: | |
res = decode_dynamic_range(&ac->che_drc, gb); | |
break; | |
case EXT_FILL: | |
decode_fill(ac, gb, 8 * cnt - 4); | |
break; | |
case EXT_FILL_DATA: | |
case EXT_DATA_ELEMENT: | |
default: | |
skip_bits_long(gb, 8 * cnt - 4); | |
break; | |
}; | |
return res; | |
} | |
/** | |
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3. | |
* | |
* @param decode 1 if tool is used normally, 0 if tool is used in LTP. | |
* @param coef spectral coefficients | |
*/ | |
static void apply_tns(INTFLOAT coef_param[1024], TemporalNoiseShaping *tns, | |
IndividualChannelStream *ics, int decode) | |
{ | |
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); | |
int w, filt, m, i; | |
int bottom, top, order, start, end, size, inc; | |
INTFLOAT lpc[TNS_MAX_ORDER]; | |
INTFLOAT tmp[TNS_MAX_ORDER+1]; | |
UINTFLOAT *coef = coef_param; | |
if(!mmm) | |
return; | |
for (w = 0; w < ics->num_windows; w++) { | |
bottom = ics->num_swb; | |
for (filt = 0; filt < tns->n_filt[w]; filt++) { | |
top = bottom; | |
bottom = FFMAX(0, top - tns->length[w][filt]); | |
order = tns->order[w][filt]; | |
if (order == 0) | |
continue; | |
// tns_decode_coef | |
AAC_RENAME(compute_lpc_coefs)(tns->coef[w][filt], order, lpc, 0, 0, 0); | |
start = ics->swb_offset[FFMIN(bottom, mmm)]; | |
end = ics->swb_offset[FFMIN( top, mmm)]; | |
if ((size = end - start) <= 0) | |
continue; | |
if (tns->direction[w][filt]) { | |
inc = -1; | |
start = end - 1; | |
} else { | |
inc = 1; | |
} | |
start += w * 128; | |
if (decode) { | |
// ar filter | |
for (m = 0; m < size; m++, start += inc) | |
for (i = 1; i <= FFMIN(m, order); i++) | |
coef[start] -= AAC_MUL26((INTFLOAT)coef[start - i * inc], lpc[i - 1]); | |
} else { | |
// ma filter | |
for (m = 0; m < size; m++, start += inc) { | |
tmp[0] = coef[start]; | |
for (i = 1; i <= FFMIN(m, order); i++) | |
coef[start] += AAC_MUL26(tmp[i], lpc[i - 1]); | |
for (i = order; i > 0; i--) | |
tmp[i] = tmp[i - 1]; | |
} | |
} | |
} | |
} | |
} | |
/** | |
* Apply windowing and MDCT to obtain the spectral | |
* coefficient from the predicted sample by LTP. | |
*/ | |
static void windowing_and_mdct_ltp(AACContext *ac, INTFLOAT *out, | |
INTFLOAT *in, IndividualChannelStream *ics) | |
{ | |
const INTFLOAT *lwindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); | |
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); | |
const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); | |
const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); | |
if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) { | |
ac->fdsp->vector_fmul(in, in, lwindow_prev, 1024); | |
} else { | |
memset(in, 0, 448 * sizeof(*in)); | |
ac->fdsp->vector_fmul(in + 448, in + 448, swindow_prev, 128); | |
} | |
if (ics->window_sequence[0] != LONG_START_SEQUENCE) { | |
ac->fdsp->vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024); | |
} else { | |
ac->fdsp->vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128); | |
memset(in + 1024 + 576, 0, 448 * sizeof(*in)); | |
} | |
ac->mdct_ltp_fn(ac->mdct_ltp, out, in, sizeof(INTFLOAT)); | |
} | |
/** | |
* Apply the long term prediction | |
*/ | |
static void apply_ltp(AACContext *ac, SingleChannelElement *sce) | |
{ | |
const LongTermPrediction *ltp = &sce->ics.ltp; | |
const uint16_t *offsets = sce->ics.swb_offset; | |
int i, sfb; | |
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { | |
INTFLOAT *predTime = sce->ret; | |
INTFLOAT *predFreq = ac->buf_mdct; | |
int16_t num_samples = 2048; | |
if (ltp->lag < 1024) | |
num_samples = ltp->lag + 1024; | |
for (i = 0; i < num_samples; i++) | |
predTime[i] = AAC_MUL30(sce->ltp_state[i + 2048 - ltp->lag], ltp->coef); | |
memset(&predTime[i], 0, (2048 - i) * sizeof(*predTime)); | |
ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics); | |
if (sce->tns.present) | |
ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0); | |
for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) | |
if (ltp->used[sfb]) | |
for (i = offsets[sfb]; i < offsets[sfb + 1]; i++) | |
sce->coeffs[i] += (UINTFLOAT)predFreq[i]; | |
} | |
} | |
/** | |
* Update the LTP buffer for next frame | |
*/ | |
static void update_ltp(AACContext *ac, SingleChannelElement *sce) | |
{ | |
IndividualChannelStream *ics = &sce->ics; | |
INTFLOAT *saved = sce->saved; | |
INTFLOAT *saved_ltp = sce->coeffs; | |
const INTFLOAT *lwindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); | |
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); | |
int i; | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
memcpy(saved_ltp, saved, 512 * sizeof(*saved_ltp)); | |
memset(saved_ltp + 576, 0, 448 * sizeof(*saved_ltp)); | |
ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); | |
for (i = 0; i < 64; i++) | |
saved_ltp[i + 512] = AAC_MUL31(ac->buf_mdct[1023 - i], swindow[63 - i]); | |
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { | |
memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(*saved_ltp)); | |
memset(saved_ltp + 576, 0, 448 * sizeof(*saved_ltp)); | |
ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64); | |
for (i = 0; i < 64; i++) | |
saved_ltp[i + 512] = AAC_MUL31(ac->buf_mdct[1023 - i], swindow[63 - i]); | |
} else { // LONG_STOP or ONLY_LONG | |
ac->fdsp->vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512); | |
for (i = 0; i < 512; i++) | |
saved_ltp[i + 512] = AAC_MUL31(ac->buf_mdct[1023 - i], lwindow[511 - i]); | |
} | |
memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state)); | |
memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state)); | |
memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state)); | |
} | |
/** | |
* Conduct IMDCT and windowing. | |
*/ | |
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce) | |
{ | |
IndividualChannelStream *ics = &sce->ics; | |
INTFLOAT *in = sce->coeffs; | |
INTFLOAT *out = sce->ret; | |
INTFLOAT *saved = sce->saved; | |
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); | |
const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_long_1024) : AAC_RENAME2(sine_1024); | |
const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME2(aac_kbd_short_128) : AAC_RENAME2(sine_128); | |
INTFLOAT *buf = ac->buf_mdct; | |
INTFLOAT *temp = ac->temp; | |
int i; | |
// imdct | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
for (i = 0; i < 1024; i += 128) | |
ac->mdct128_fn(ac->mdct128, buf + i, in + i, sizeof(INTFLOAT)); | |
} else { | |
ac->mdct1024_fn(ac->mdct1024, buf, in, sizeof(INTFLOAT)); | |
} | |
/* window overlapping | |
* NOTE: To simplify the overlapping code, all 'meaningless' short to long | |
* and long to short transitions are considered to be short to short | |
* transitions. This leaves just two cases (long to long and short to short) | |
* with a little special sauce for EIGHT_SHORT_SEQUENCE. | |
*/ | |
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && | |
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { | |
ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 512); | |
} else { | |
memcpy( out, saved, 448 * sizeof(*out)); | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
ac->fdsp->vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64); | |
ac->fdsp->vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64); | |
ac->fdsp->vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64); | |
ac->fdsp->vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64); | |
ac->fdsp->vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64); | |
memcpy( out + 448 + 4*128, temp, 64 * sizeof(*out)); | |
} else { | |
ac->fdsp->vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64); | |
memcpy( out + 576, buf + 64, 448 * sizeof(*out)); | |
} | |
} | |
// buffer update | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
memcpy( saved, temp + 64, 64 * sizeof(*saved)); | |
ac->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64); | |
ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64); | |
ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64); | |
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(*saved)); | |
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { | |
memcpy( saved, buf + 512, 448 * sizeof(*saved)); | |
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(*saved)); | |
} else { // LONG_STOP or ONLY_LONG | |
memcpy( saved, buf + 512, 512 * sizeof(*saved)); | |
} | |
} | |
/** | |
* Conduct IMDCT and windowing. | |
*/ | |
static void imdct_and_windowing_960(AACContext *ac, SingleChannelElement *sce) | |
{ | |
IndividualChannelStream *ics = &sce->ics; | |
INTFLOAT *in = sce->coeffs; | |
INTFLOAT *out = sce->ret; | |
INTFLOAT *saved = sce->saved; | |
const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_RENAME(aac_kbd_short_120) : AAC_RENAME(sine_120); | |
const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_RENAME(aac_kbd_long_960) : AAC_RENAME(sine_960); | |
const INTFLOAT *swindow_prev = ics->use_kb_window[1] ? AAC_RENAME(aac_kbd_short_120) : AAC_RENAME(sine_120); | |
INTFLOAT *buf = ac->buf_mdct; | |
INTFLOAT *temp = ac->temp; | |
int i; | |
// imdct | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
for (i = 0; i < 8; i++) | |
ac->mdct120_fn(ac->mdct120, buf + i * 120, in + i * 128, sizeof(INTFLOAT)); | |
} else { | |
ac->mdct960_fn(ac->mdct960, buf, in, sizeof(INTFLOAT)); | |
} | |
/* window overlapping | |
* NOTE: To simplify the overlapping code, all 'meaningless' short to long | |
* and long to short transitions are considered to be short to short | |
* transitions. This leaves just two cases (long to long and short to short) | |
* with a little special sauce for EIGHT_SHORT_SEQUENCE. | |
*/ | |
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && | |
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { | |
ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 480); | |
} else { | |
memcpy( out, saved, 420 * sizeof(*out)); | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
ac->fdsp->vector_fmul_window(out + 420 + 0*120, saved + 420, buf + 0*120, swindow_prev, 60); | |
ac->fdsp->vector_fmul_window(out + 420 + 1*120, buf + 0*120 + 60, buf + 1*120, swindow, 60); | |
ac->fdsp->vector_fmul_window(out + 420 + 2*120, buf + 1*120 + 60, buf + 2*120, swindow, 60); | |
ac->fdsp->vector_fmul_window(out + 420 + 3*120, buf + 2*120 + 60, buf + 3*120, swindow, 60); | |
ac->fdsp->vector_fmul_window(temp, buf + 3*120 + 60, buf + 4*120, swindow, 60); | |
memcpy( out + 420 + 4*120, temp, 60 * sizeof(*out)); | |
} else { | |
ac->fdsp->vector_fmul_window(out + 420, saved + 420, buf, swindow_prev, 60); | |
memcpy( out + 540, buf + 60, 420 * sizeof(*out)); | |
} | |
} | |
// buffer update | |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
memcpy( saved, temp + 60, 60 * sizeof(*saved)); | |
ac->fdsp->vector_fmul_window(saved + 60, buf + 4*120 + 60, buf + 5*120, swindow, 60); | |
ac->fdsp->vector_fmul_window(saved + 180, buf + 5*120 + 60, buf + 6*120, swindow, 60); | |
ac->fdsp->vector_fmul_window(saved + 300, buf + 6*120 + 60, buf + 7*120, swindow, 60); | |
memcpy( saved + 420, buf + 7*120 + 60, 60 * sizeof(*saved)); | |
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { | |
memcpy( saved, buf + 480, 420 * sizeof(*saved)); | |
memcpy( saved + 420, buf + 7*120 + 60, 60 * sizeof(*saved)); | |
} else { // LONG_STOP or ONLY_LONG | |
memcpy( saved, buf + 480, 480 * sizeof(*saved)); | |
} | |
} | |
static void imdct_and_windowing_ld(AACContext *ac, SingleChannelElement *sce) | |
{ | |
IndividualChannelStream *ics = &sce->ics; | |
INTFLOAT *in = sce->coeffs; | |
INTFLOAT *out = sce->ret; | |
INTFLOAT *saved = sce->saved; | |
INTFLOAT *buf = ac->buf_mdct; | |
// imdct | |
ac->mdct512_fn(ac->mdct512, buf, in, sizeof(INTFLOAT)); | |
// window overlapping | |
if (ics->use_kb_window[1]) { | |
// AAC LD uses a low overlap sine window instead of a KBD window | |
memcpy(out, saved, 192 * sizeof(*out)); | |
ac->fdsp->vector_fmul_window(out + 192, saved + 192, buf, AAC_RENAME2(sine_128), 64); | |
memcpy( out + 320, buf + 64, 192 * sizeof(*out)); | |
} else { | |
ac->fdsp->vector_fmul_window(out, saved, buf, AAC_RENAME2(sine_512), 256); | |
} | |
// buffer update | |
memcpy(saved, buf + 256, 256 * sizeof(*saved)); | |
} | |
static void imdct_and_windowing_eld(AACContext *ac, SingleChannelElement *sce) | |
{ | |
UINTFLOAT *in = sce->coeffs; | |
INTFLOAT *out = sce->ret; | |
INTFLOAT *saved = sce->saved; | |
INTFLOAT *buf = ac->buf_mdct; | |
int i; | |
const int n = ac->oc[1].m4ac.frame_length_short ? 480 : 512; | |
const int n2 = n >> 1; | |
const int n4 = n >> 2; | |
const INTFLOAT *const window = n == 480 ? AAC_RENAME(ff_aac_eld_window_480) : | |
AAC_RENAME(ff_aac_eld_window_512); | |
// Inverse transform, mapped to the conventional IMDCT by | |
// Chivukula, R.K.; Reznik, Y.A.; Devarajan, V., | |
// "Efficient algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC filterbanks," | |
// International Conference on Audio, Language and Image Processing, ICALIP 2008. | |
// URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4590245&isnumber=4589950 | |
for (i = 0; i < n2; i+=2) { | |
INTFLOAT temp; | |
temp = in[i ]; in[i ] = -in[n - 1 - i]; in[n - 1 - i] = temp; | |
temp = -in[i + 1]; in[i + 1] = in[n - 2 - i]; in[n - 2 - i] = temp; | |
} | |
if (n == 480) | |
ac->mdct480_fn(ac->mdct480, buf, in, sizeof(INTFLOAT)); | |
else | |
ac->mdct512_fn(ac->mdct512, buf, in, sizeof(INTFLOAT)); | |
for (i = 0; i < n; i+=2) { | |
buf[i + 0] = -(USE_FIXED + 1)*buf[i + 0]; | |
buf[i + 1] = (USE_FIXED + 1)*buf[i + 1]; | |
} | |
// Like with the regular IMDCT at this point we still have the middle half | |
// of a transform but with even symmetry on the left and odd symmetry on | |
// the right | |
// window overlapping | |
// The spec says to use samples [0..511] but the reference decoder uses | |
// samples [128..639]. | |
for (i = n4; i < n2; i ++) { | |
out[i - n4] = AAC_MUL31( buf[ n2 - 1 - i] , window[i - n4]) + | |
AAC_MUL31( saved[ i + n2] , window[i + n - n4]) + | |
AAC_MUL31(-saved[n + n2 - 1 - i] , window[i + 2*n - n4]) + | |
AAC_MUL31(-saved[ 2*n + n2 + i] , window[i + 3*n - n4]); | |
} | |
for (i = 0; i < n2; i ++) { | |
out[n4 + i] = AAC_MUL31( buf[ i] , window[i + n2 - n4]) + | |
AAC_MUL31(-saved[ n - 1 - i] , window[i + n2 + n - n4]) + | |
AAC_MUL31(-saved[ n + i] , window[i + n2 + 2*n - n4]) + | |
AAC_MUL31( saved[2*n + n - 1 - i] , window[i + n2 + 3*n - n4]); | |
} | |
for (i = 0; i < n4; i ++) { | |
out[n2 + n4 + i] = AAC_MUL31( buf[ i + n2] , window[i + n - n4]) + | |
AAC_MUL31(-saved[n2 - 1 - i] , window[i + 2*n - n4]) + | |
AAC_MUL31(-saved[n + n2 + i] , window[i + 3*n - n4]); | |
} | |
// buffer update | |
memmove(saved + n, saved, 2 * n * sizeof(*saved)); | |
memcpy( saved, buf, n * sizeof(*saved)); | |
} | |
/** | |
* channel coupling transformation interface | |
* | |
* @param apply_coupling_method pointer to (in)dependent coupling function | |
*/ | |
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc, | |
enum RawDataBlockType type, int elem_id, | |
enum CouplingPoint coupling_point, | |
void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)) | |
{ | |
int i, c; | |
for (i = 0; i < MAX_ELEM_ID; i++) { | |
ChannelElement *cce = ac->che[TYPE_CCE][i]; | |
int index = 0; | |
if (cce && cce->coup.coupling_point == coupling_point) { | |
ChannelCoupling *coup = &cce->coup; | |
for (c = 0; c <= coup->num_coupled; c++) { | |
if (coup->type[c] == type && coup->id_select[c] == elem_id) { | |
if (coup->ch_select[c] != 1) { | |
apply_coupling_method(ac, &cc->ch[0], cce, index); | |
if (coup->ch_select[c] != 0) | |
index++; | |
} | |
if (coup->ch_select[c] != 2) | |
apply_coupling_method(ac, &cc->ch[1], cce, index++); | |
} else | |
index += 1 + (coup->ch_select[c] == 3); | |
} | |
} | |
} | |
} | |
/** | |
* Convert spectral data to samples, applying all supported tools as appropriate. | |
*/ | |
static void spectral_to_sample(AACContext *ac, int samples) | |
{ | |
int i, type; | |
void (*imdct_and_window)(AACContext *ac, SingleChannelElement *sce); | |
switch (ac->oc[1].m4ac.object_type) { | |
case AOT_ER_AAC_LD: | |
imdct_and_window = imdct_and_windowing_ld; | |
break; | |
case AOT_ER_AAC_ELD: | |
imdct_and_window = imdct_and_windowing_eld; | |
break; | |
default: | |
if (ac->oc[1].m4ac.frame_length_short) | |
imdct_and_window = imdct_and_windowing_960; | |
else | |
imdct_and_window = ac->imdct_and_windowing; | |
} | |
for (type = 3; type >= 0; type--) { | |
for (i = 0; i < MAX_ELEM_ID; i++) { | |
ChannelElement *che = ac->che[type][i]; | |
if (che && che->present) { | |
if (type <= TYPE_CPE) | |
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, AAC_RENAME(apply_dependent_coupling)); | |
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) { | |
if (che->ch[0].ics.predictor_present) { | |
if (che->ch[0].ics.ltp.present) | |
ac->apply_ltp(ac, &che->ch[0]); | |
if (che->ch[1].ics.ltp.present && type == TYPE_CPE) | |
ac->apply_ltp(ac, &che->ch[1]); | |
} | |
} | |
if (che->ch[0].tns.present) | |
ac->apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); | |
if (che->ch[1].tns.present) | |
ac->apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); | |
if (type <= TYPE_CPE) | |
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, AAC_RENAME(apply_dependent_coupling)); | |
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) { | |
imdct_and_window(ac, &che->ch[0]); | |
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) | |
ac->update_ltp(ac, &che->ch[0]); | |
if (type == TYPE_CPE) { | |
imdct_and_window(ac, &che->ch[1]); | |
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) | |
ac->update_ltp(ac, &che->ch[1]); | |
} | |
if (ac->oc[1].m4ac.sbr > 0) { | |
AAC_RENAME(ff_sbr_apply)(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret); | |
} | |
} | |
if (type <= TYPE_CCE) | |
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, AAC_RENAME(apply_independent_coupling)); | |
{ | |
int j; | |
/* preparation for resampler */ | |
for(j = 0; j<samples; j++){ | |
che->ch[0].ret[j] = (int32_t)av_clip64((int64_t)che->ch[0].ret[j]*128, INT32_MIN, INT32_MAX-0x8000)+0x8000; | |
if (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) | |
che->ch[1].ret[j] = (int32_t)av_clip64((int64_t)che->ch[1].ret[j]*128, INT32_MIN, INT32_MAX-0x8000)+0x8000; | |
} | |
} | |
che->present = 0; | |
} else if (che) { | |
av_log(ac->avctx, AV_LOG_VERBOSE, "ChannelElement %d.%d missing \n", type, i); | |
} | |
} | |
} | |
} | |
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb) | |
{ | |
int size; | |
AACADTSHeaderInfo hdr_info; | |
uint8_t layout_map[MAX_ELEM_ID*4][3]; | |
int layout_map_tags, ret; | |
size = ff_adts_header_parse(gb, &hdr_info); | |
if (size > 0) { | |
if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) { | |
// This is 2 for "VLB " audio in NSV files. | |
// See samples/nsv/vlb_audio. | |
avpriv_report_missing_feature(ac->avctx, | |
"More than one AAC RDB per ADTS frame"); | |
ac->warned_num_aac_frames = 1; | |
} | |
push_output_configuration(ac); | |
if (hdr_info.chan_config) { | |
ac->oc[1].m4ac.chan_config = hdr_info.chan_config; | |
if ((ret = set_default_channel_config(ac, ac->avctx, | |
layout_map, | |
&layout_map_tags, | |
hdr_info.chan_config)) < 0) | |
return ret; | |
if ((ret = output_configure(ac, layout_map, layout_map_tags, | |
FFMAX(ac->oc[1].status, | |
OC_TRIAL_FRAME), 0)) < 0) | |
return ret; | |
} else { | |
ac->oc[1].m4ac.chan_config = 0; | |
/** | |
* dual mono frames in Japanese DTV can have chan_config 0 | |
* WITHOUT specifying PCE. | |
* thus, set dual mono as default. | |
*/ | |
if (ac->dmono_mode && ac->oc[0].status == OC_NONE) { | |
layout_map_tags = 2; | |
layout_map[0][0] = layout_map[1][0] = TYPE_SCE; | |
layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT; | |
layout_map[0][1] = 0; | |
layout_map[1][1] = 1; | |
if (output_configure(ac, layout_map, layout_map_tags, | |
OC_TRIAL_FRAME, 0)) | |
return -7; | |
} | |
} | |
ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate; | |
ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index; | |
ac->oc[1].m4ac.object_type = hdr_info.object_type; | |
ac->oc[1].m4ac.frame_length_short = 0; | |
if (ac->oc[0].status != OC_LOCKED || | |
ac->oc[0].m4ac.chan_config != hdr_info.chan_config || | |
ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) { | |
ac->oc[1].m4ac.sbr = -1; | |
ac->oc[1].m4ac.ps = -1; | |
} | |
if (!hdr_info.crc_absent) | |
skip_bits(gb, 16); | |
} | |
return size; | |
} | |
static int aac_decode_er_frame(AVCodecContext *avctx, void *data, | |
int *got_frame_ptr, GetBitContext *gb) | |
{ | |
AACContext *ac = avctx->priv_data; | |
const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; | |
ChannelElement *che; | |
int err, i; | |
int samples = m4ac->frame_length_short ? 960 : 1024; | |
int chan_config = m4ac->chan_config; | |
int aot = m4ac->object_type; | |
if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) | |
samples >>= 1; | |
ac->frame = data; | |
if ((err = frame_configure_elements(avctx)) < 0) | |
return err; | |
// The FF_PROFILE_AAC_* defines are all object_type - 1 | |
// This may lead to an undefined profile being signaled | |
ac->avctx->profile = aot - 1; | |
ac->tags_mapped = 0; | |
if (chan_config < 0 || (chan_config >= 8 && chan_config < 11) || chan_config >= 13) { | |
avpriv_request_sample(avctx, "Unknown ER channel configuration %d", | |
chan_config); | |
return AVERROR_INVALIDDATA; | |
} | |
for (i = 0; i < tags_per_config[chan_config]; i++) { | |
const int elem_type = aac_channel_layout_map[chan_config-1][i][0]; | |
const int elem_id = aac_channel_layout_map[chan_config-1][i][1]; | |
if (!(che=get_che(ac, elem_type, elem_id))) { | |
av_log(ac->avctx, AV_LOG_ERROR, | |
"channel element %d.%d is not allocated\n", | |
elem_type, elem_id); | |
return AVERROR_INVALIDDATA; | |
} | |
che->present = 1; | |
if (aot != AOT_ER_AAC_ELD) | |
skip_bits(gb, 4); | |
switch (elem_type) { | |
case TYPE_SCE: | |
err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
break; | |
case TYPE_CPE: | |
err = decode_cpe(ac, gb, che); | |
break; | |
case TYPE_LFE: | |
err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
break; | |
} | |
if (err < 0) | |
return err; | |
} | |
spectral_to_sample(ac, samples); | |
if (!ac->frame->data[0] && samples) { | |
av_log(avctx, AV_LOG_ERROR, "no frame data found\n"); | |
return AVERROR_INVALIDDATA; | |
} | |
ac->frame->nb_samples = samples; | |
ac->frame->sample_rate = avctx->sample_rate; | |
*got_frame_ptr = 1; | |
skip_bits_long(gb, get_bits_left(gb)); | |
return 0; | |
} | |
static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame, | |
int *got_frame_ptr, GetBitContext *gb, | |
const AVPacket *avpkt) | |
{ | |
AACContext *ac = avctx->priv_data; | |
ChannelElement *che = NULL, *che_prev = NULL; | |
enum RawDataBlockType elem_type, che_prev_type = TYPE_END; | |
int err, elem_id; | |
int samples = 0, multiplier, audio_found = 0, pce_found = 0; | |
int is_dmono, sce_count = 0; | |
int payload_alignment; | |
uint8_t che_presence[4][MAX_ELEM_ID] = {{0}}; | |
ac->frame = frame; | |
if (show_bits(gb, 12) == 0xfff) { | |
if ((err = parse_adts_frame_header(ac, gb)) < 0) { | |
av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); | |
goto fail; | |
} | |
if (ac->oc[1].m4ac.sampling_index > 12) { | |
av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index); | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
} | |
if ((err = frame_configure_elements(avctx)) < 0) | |
goto fail; | |
// The FF_PROFILE_AAC_* defines are all object_type - 1 | |
// This may lead to an undefined profile being signaled | |
ac->avctx->profile = ac->oc[1].m4ac.object_type - 1; | |
payload_alignment = get_bits_count(gb); | |
ac->tags_mapped = 0; | |
// parse | |
while ((elem_type = get_bits(gb, 3)) != TYPE_END) { | |
elem_id = get_bits(gb, 4); | |
if (avctx->debug & FF_DEBUG_STARTCODE) | |
av_log(avctx, AV_LOG_DEBUG, "Elem type:%x id:%x\n", elem_type, elem_id); | |
if (!avctx->ch_layout.nb_channels && elem_type != TYPE_PCE) { | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
if (elem_type < TYPE_DSE) { | |
if (che_presence[elem_type][elem_id]) { | |
int error = che_presence[elem_type][elem_id] > 1; | |
av_log(ac->avctx, error ? AV_LOG_ERROR : AV_LOG_DEBUG, "channel element %d.%d duplicate\n", | |
elem_type, elem_id); | |
if (error) { | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
} | |
che_presence[elem_type][elem_id]++; | |
if (!(che=get_che(ac, elem_type, elem_id))) { | |
av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", | |
elem_type, elem_id); | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
samples = ac->oc[1].m4ac.frame_length_short ? 960 : 1024; | |
che->present = 1; | |
} | |
switch (elem_type) { | |
case TYPE_SCE: | |
err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
audio_found = 1; | |
sce_count++; | |
break; | |
case TYPE_CPE: | |
err = decode_cpe(ac, gb, che); | |
audio_found = 1; | |
break; | |
case TYPE_CCE: | |
err = decode_cce(ac, gb, che); | |
break; | |
case TYPE_LFE: | |
err = decode_ics(ac, &che->ch[0], gb, 0, 0); | |
audio_found = 1; | |
break; | |
case TYPE_DSE: | |
err = skip_data_stream_element(ac, gb); | |
break; | |
case TYPE_PCE: { | |
uint8_t layout_map[MAX_ELEM_ID*4][3] = {{0}}; | |
int tags; | |
int pushed = push_output_configuration(ac); | |
if (pce_found && !pushed) { | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb, | |
payload_alignment); | |
if (tags < 0) { | |
err = tags; | |
break; | |
} | |
if (pce_found) { | |
av_log(avctx, AV_LOG_ERROR, | |
"Not evaluating a further program_config_element as this construct is dubious at best.\n"); | |
pop_output_configuration(ac); | |
} else { | |
err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1); | |
if (!err) | |
ac->oc[1].m4ac.chan_config = 0; | |
pce_found = 1; | |
} | |
break; | |
} | |
case TYPE_FIL: | |
if (elem_id == 15) | |
elem_id += get_bits(gb, 8) - 1; | |
if (get_bits_left(gb) < 8 * elem_id) { | |
av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err); | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
err = 0; | |
while (elem_id > 0) { | |
int ret = decode_extension_payload(ac, gb, elem_id, che_prev, che_prev_type); | |
if (ret < 0) { | |
err = ret; | |
break; | |
} | |
elem_id -= ret; | |
} | |
break; | |
default: | |
err = AVERROR_BUG; /* should not happen, but keeps compiler happy */ | |
break; | |
} | |
if (elem_type < TYPE_DSE) { | |
che_prev = che; | |
che_prev_type = elem_type; | |
} | |
if (err) | |
goto fail; | |
if (get_bits_left(gb) < 3) { | |
av_log(avctx, AV_LOG_ERROR, overread_err); | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
} | |
if (!avctx->ch_layout.nb_channels) { | |
*got_frame_ptr = 0; | |
return 0; | |
} | |
multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0; | |
samples <<= multiplier; | |
spectral_to_sample(ac, samples); | |
if (ac->oc[1].status && audio_found) { | |
avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier; | |
avctx->frame_size = samples; | |
ac->oc[1].status = OC_LOCKED; | |
} | |
if (!ac->frame->data[0] && samples) { | |
av_log(avctx, AV_LOG_ERROR, "no frame data found\n"); | |
err = AVERROR_INVALIDDATA; | |
goto fail; | |
} | |
if (samples) { | |
ac->frame->nb_samples = samples; | |
ac->frame->sample_rate = avctx->sample_rate; | |
} else | |
av_frame_unref(ac->frame); | |
*got_frame_ptr = !!samples; | |
/* for dual-mono audio (SCE + SCE) */ | |
is_dmono = ac->dmono_mode && sce_count == 2 && | |
!av_channel_layout_compare(&ac->oc[1].ch_layout, | |
&(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO); | |
if (is_dmono) { | |
if (ac->dmono_mode == 1) | |
frame->data[1] = frame->data[0]; | |
else if (ac->dmono_mode == 2) | |
frame->data[0] = frame->data[1]; | |
} | |
return 0; | |
fail: | |
pop_output_configuration(ac); | |
return err; | |
} | |
static int aac_decode_frame(AVCodecContext *avctx, AVFrame *frame, | |
int *got_frame_ptr, AVPacket *avpkt) | |
{ | |
AACContext *ac = avctx->priv_data; | |
const uint8_t *buf = avpkt->data; | |
int buf_size = avpkt->size; | |
GetBitContext gb; | |
int buf_consumed; | |
int buf_offset; | |
int err; | |
size_t new_extradata_size; | |
const uint8_t *new_extradata = av_packet_get_side_data(avpkt, | |
AV_PKT_DATA_NEW_EXTRADATA, | |
&new_extradata_size); | |
size_t jp_dualmono_size; | |
const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt, | |
AV_PKT_DATA_JP_DUALMONO, | |
&jp_dualmono_size); | |
if (new_extradata) { | |
/* discard previous configuration */ | |
ac->oc[1].status = OC_NONE; | |
err = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, | |
new_extradata, | |
new_extradata_size * 8LL, 1); | |
if (err < 0) { | |
return err; | |
} | |
} | |
ac->dmono_mode = 0; | |
if (jp_dualmono && jp_dualmono_size > 0) | |
ac->dmono_mode = 1 + *jp_dualmono; | |
if (ac->force_dmono_mode >= 0) | |
ac->dmono_mode = ac->force_dmono_mode; | |
if (INT_MAX / 8 <= buf_size) | |
return AVERROR_INVALIDDATA; | |
if ((err = init_get_bits8(&gb, buf, buf_size)) < 0) | |
return err; | |
switch (ac->oc[1].m4ac.object_type) { | |
case AOT_ER_AAC_LC: | |
case AOT_ER_AAC_LTP: | |
case AOT_ER_AAC_LD: | |
case AOT_ER_AAC_ELD: | |
err = aac_decode_er_frame(avctx, frame, got_frame_ptr, &gb); | |
break; | |
default: | |
err = aac_decode_frame_int(avctx, frame, got_frame_ptr, &gb, avpkt); | |
} | |
if (err < 0) | |
return err; | |
buf_consumed = (get_bits_count(&gb) + 7) >> 3; | |
for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++) | |
if (buf[buf_offset]) | |
break; | |
return buf_size > buf_offset ? buf_consumed : buf_size; | |
} | |
static av_cold int aac_decode_close(AVCodecContext *avctx) | |
{ | |
AACContext *ac = avctx->priv_data; | |
int i, type; | |
for (i = 0; i < MAX_ELEM_ID; i++) { | |
for (type = 0; type < 4; type++) { | |
if (ac->che[type][i]) | |
AAC_RENAME(ff_aac_sbr_ctx_close)(&ac->che[type][i]->sbr); | |
av_freep(&ac->che[type][i]); | |
} | |
} | |
av_tx_uninit(&ac->mdct120); | |
av_tx_uninit(&ac->mdct128); | |
av_tx_uninit(&ac->mdct480); | |
av_tx_uninit(&ac->mdct512); | |
av_tx_uninit(&ac->mdct960); | |
av_tx_uninit(&ac->mdct1024); | |
av_tx_uninit(&ac->mdct_ltp); | |
av_freep(&ac->fdsp); | |
return 0; | |
} | |
static void aacdec_init(AACContext *c) | |
{ | |
c->imdct_and_windowing = imdct_and_windowing; | |
c->apply_ltp = apply_ltp; | |
c->apply_tns = apply_tns; | |
c->windowing_and_mdct_ltp = windowing_and_mdct_ltp; | |
c->update_ltp = update_ltp; | |
c->vector_pow43 = vector_pow43; | |
c->subband_scale = subband_scale; | |
ff_aacdec_init_mips(c); | |
} | |
/** | |
* AVOptions for Japanese DTV specific extensions (ADTS only) | |
*/ | |
static const AVOption options[] = { | |
{"dual_mono_mode", "Select the channel to decode for dual mono", | |
offsetof(AACContext, force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2, | |
AACDEC_FLAGS, "dual_mono_mode"}, | |
{"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
{"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
{"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
{"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"}, | |
{ "channel_order", "Order in which the channels are to be exported", | |
offsetof(AACContext, output_channel_order), AV_OPT_TYPE_INT, | |
{ .i64 = CHANNEL_ORDER_DEFAULT }, 0, 1, AACDEC_FLAGS, "channel_order" }, | |
{ "default", "normal libavcodec channel order", 0, AV_OPT_TYPE_CONST, | |
{ .i64 = CHANNEL_ORDER_DEFAULT }, .flags = AACDEC_FLAGS, "channel_order" }, | |
{ "coded", "order in which the channels are coded in the bitstream", | |
0, AV_OPT_TYPE_CONST, { .i64 = CHANNEL_ORDER_CODED }, .flags = AACDEC_FLAGS, "channel_order" }, | |
{NULL}, | |
}; | |
static const AVClass aac_decoder_class = { | |
.class_name = "AAC decoder", | |
.item_name = av_default_item_name, | |
.option = options, | |
.version = LIBAVUTIL_VERSION_INT, | |
}; | |