File size: 5,442 Bytes
970a7a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
from os.path import join
from merge_predictions import get_image_dict, apply_merge
from froc_by_pranjal import calc_froc_from_dict, pretty_print_fps
import numpy as np
import matplotlib.pyplot as plt
OUT_DIR = 'euro_results_auto'
numbers_dir = os.path.join(OUT_DIR, 'numbers')
graphs_dir = os.path.join(OUT_DIR, 'graphs')
BASE_FOLDER = '../bilateral_new/MammoDatasets'
MIN_CLIP_FPI = 0.02
def plot_froc(input_files, save_file, TITLE = 'FRCNN vs BILATERAL FROC', SHOW = False, CLIP_FPI = 1.2):
for file in input_files:
lines = open(file).readlines()
x = np.array([float(line.split()[0]) for line in lines])
y = np.array([float(line.split()[1]) for line in lines])
y = y[x<CLIP_FPI]
x = x[x<CLIP_FPI]
y = y[MIN_CLIP_FPI<x]
x = x[MIN_CLIP_FPI<x]
plt.plot(x, y, label = input_files[file])
plt.legend()
plt.title(TITLE)
plt.xlabel('Average False Positive Per Image')
plt.ylabel('Sensitivity')
if SHOW:
plt.show()
plt.savefig(save_file)
plt.clf()
dsets = [('AIIMS_highres_reliable', 'AIIMS'), ('IRCHVal', 'IRCHVal')]
dsets = dsets[1:]
for dset in dsets:
test_splits = ['test_2', 'test_dense', 'test_iso'][::-1]
for test_split in test_splits:
main_dataset = join(BASE_FOLDER, dset[0], test_split)
contrast_datasets = [join(BASE_FOLDER,f'{dset[1]}_C{i+1}',test_split) for i in range(4)]
threshold_datasets = [join(BASE_FOLDER,f'{dset[1]}_T{i+1}',test_split) for i in range(2)]
frcnn_preds = 'preds_frcnn_frcnn'
contrast_preds = [
'preds_frcnn_AIIMS_C1',
'preds_frcnn_AIIMS_C2',
'preds_frcnn_AIIMS_C3',
'preds_frcnn_AIIMS_C4',
]
bilateral_preds = 'preds_bilateral_BILATERAL'
threshold_preds = [
'preds_frcnn_AIIMS_T1',
'preds_frcnn_AIIMS_T2',
]
input_files = []
dataset_paths = [join(main_dataset, '{0}', frcnn_preds)]
dataset_paths +=[join(dset, '{0}', preds) for (dset,preds) in zip(contrast_datasets, contrast_preds)]
dataset_paths +=[join(dset, '{0}', preds) for (dset,preds) in zip(threshold_datasets, threshold_preds)]
dataset_paths +=[join(main_dataset, '{0}', bilateral_preds)]
CONFIGS = {
'Baseline' : ('Baseline Model', [0]),
'Bilateral' : ('Bilateral Model', [7]),
'Contrast' : ('CABD Model', [0,1,2,3,4]),
'Threshold' : ('TI Model', [0,5,6]),
'Proposed' : ('Proposed Model', [1,2,3,4,5,6,7])
}
# Now handle the directories
num_dir = os.path.join(numbers_dir, dset[1], test_split)
os.makedirs(num_dir, exist_ok=True)
for config in CONFIGS:
title = CONFIGS[config][0]
allowed = CONFIGS[config][1]
weight_map = {
0 : 1.,
1 : 1,
2 : 1.,
3 : 1.,
4 : .5, # C4
5 : 0.5,
6 : 0.5,
7 : 1
}
weights = [weight_map[x] for x in allowed]
# generate the required mp dicts
def c2_manp(preds):
preds = list(filter(lambda x: x[0]>0.85,preds)) # keep preds lower than 0.6 confidence
return preds
def c3_manp(preds):
preds = list(filter(lambda x: x[0]>0.85,preds)) # keep preds lower than 0.6 confidence
return preds
def t1_manp(preds):
preds = list(filter(lambda x: x[0]>0.6,preds)) # keep preds lower than 0.6 confidence
return preds
t2_manp = t1_manp
mp_dict = {
f'{dset[1]}_C2' : c2_manp,
f'{dset[1]}_C3' : c3_manp,
f'{dset[1]}_T1' : t1_manp,
f'{dset[1]}_T2' : t2_manp,
f'{dset[1]}_C4' : c3_manp
}
image_dict = get_image_dict(dataset_paths, allowed = allowed, USE_ACR = False, acr_cat = None, mp_dict = mp_dict)
image_dict = apply_merge(image_dict, METHOD = 'nms', weights= weights, conf_type='absent_model_aware_avg')
senses, fps = calc_froc_from_dict(image_dict, fps_req = [0.025,0.05,0.1,0.15,0.2,0.3,1.], save_to = os.path.join(num_dir, f'{title}.txt'))
# Lets plot now
GRAPHS = [
('Bilateral','Baseline'),
('Contrast','Baseline'),
('Threshold','Baseline'),
('Proposed','Baseline'),
('Proposed', 'Bilateral'),
('Proposed', 'Contrast'),
('Proposed', 'Threshold'),
]
# Now handle the directories
graph_dir = os.path.join(graphs_dir, dset[1], test_split)
os.makedirs(graph_dir, exist_ok=True)
for graph in GRAPHS:
if graph[0] not in CONFIGS or graph[1] not in CONFIGS: continue
file_name1 = f'{CONFIGS[graph[0]][0]}.txt'
file_name2 = f'{CONFIGS[graph[1]][0]}.txt'
title1 = CONFIGS[graph[0]][0]
title2 = CONFIGS[graph[1]][0]
plot_froc({
join(num_dir, file_name1): title1,
join(num_dir, file_name2) : title2,
}, join(graph_dir,f'{title1}_vs_{title2}.png'),f'{title1} vs {title2} FROC', CLIP_FPI = 0.3 if dset[0] == 'IRCHVal' else 0.8)
|