File size: 5,442 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
from os.path import join
from merge_predictions import get_image_dict, apply_merge
from froc_by_pranjal import calc_froc_from_dict, pretty_print_fps
import numpy as np 
import matplotlib.pyplot as plt


OUT_DIR = 'euro_results_auto'
numbers_dir = os.path.join(OUT_DIR, 'numbers')
graphs_dir = os.path.join(OUT_DIR, 'graphs')

BASE_FOLDER = '../bilateral_new/MammoDatasets'

MIN_CLIP_FPI = 0.02
def plot_froc(input_files, save_file, TITLE = 'FRCNN vs BILATERAL FROC', SHOW = False, CLIP_FPI = 1.2):
    for file in input_files:
        lines = open(file).readlines()
        x = np.array([float(line.split()[0]) for line in lines])
        y = np.array([float(line.split()[1]) for line in lines])
        y = y[x<CLIP_FPI]
        x = x[x<CLIP_FPI]
        y = y[MIN_CLIP_FPI<x]
        x = x[MIN_CLIP_FPI<x]
        plt.plot(x, y, label = input_files[file])
        plt.legend()

    plt.title(TITLE)
    plt.xlabel('Average False Positive Per Image')
    plt.ylabel('Sensitivity')

    if SHOW:
        plt.show()
    plt.savefig(save_file)
    plt.clf()


dsets = [('AIIMS_highres_reliable', 'AIIMS'), ('IRCHVal', 'IRCHVal')]
dsets = dsets[1:]
for dset in dsets:
    test_splits = ['test_2', 'test_dense', 'test_iso'][::-1]
    for test_split in test_splits:
        main_dataset = join(BASE_FOLDER, dset[0], test_split)

        contrast_datasets =  [join(BASE_FOLDER,f'{dset[1]}_C{i+1}',test_split) for i in range(4)]
        threshold_datasets = [join(BASE_FOLDER,f'{dset[1]}_T{i+1}',test_split) for i in range(2)]
        frcnn_preds = 'preds_frcnn_frcnn'
        contrast_preds = [
            'preds_frcnn_AIIMS_C1',
            'preds_frcnn_AIIMS_C2',
            'preds_frcnn_AIIMS_C3',
            'preds_frcnn_AIIMS_C4',
        ]
        bilateral_preds = 'preds_bilateral_BILATERAL'
        threshold_preds = [
            'preds_frcnn_AIIMS_T1',
            'preds_frcnn_AIIMS_T2',
        ]

        input_files = []
        dataset_paths = [join(main_dataset,  '{0}', frcnn_preds)]
        dataset_paths +=[join(dset, '{0}', preds) for (dset,preds) in zip(contrast_datasets, contrast_preds)]
        dataset_paths +=[join(dset, '{0}', preds) for (dset,preds) in zip(threshold_datasets, threshold_preds)]
        dataset_paths +=[join(main_dataset, '{0}', bilateral_preds)]


        CONFIGS = {
            'Baseline' : ('Baseline Model', [0]),
            'Bilateral' : ('Bilateral Model', [7]),
            'Contrast' : ('CABD Model', [0,1,2,3,4]),
            'Threshold' : ('TI Model', [0,5,6]),
            'Proposed' : ('Proposed Model', [1,2,3,4,5,6,7])
        }

        # Now handle the directories
        num_dir = os.path.join(numbers_dir, dset[1], test_split)
        os.makedirs(num_dir, exist_ok=True)


        for config in CONFIGS:
            title = CONFIGS[config][0]
            allowed = CONFIGS[config][1]

            weight_map = {
                0 : 1.,
                1 : 1,
                2 : 1.,
                3 : 1.,
                4 : .5, # C4
                5 : 0.5,
                6 : 0.5,
                7 : 1
            }

            weights = [weight_map[x] for x in allowed]
            
            # generate the required mp dicts
            def c2_manp(preds):
                preds  = list(filter(lambda x: x[0]>0.85,preds)) # keep preds lower than 0.6 confidence
                return preds

            def c3_manp(preds):
                preds  = list(filter(lambda x: x[0]>0.85,preds)) # keep preds lower than 0.6 confidence
                return preds

            def t1_manp(preds):
                preds  = list(filter(lambda x: x[0]>0.6,preds)) # keep preds lower than 0.6 confidence
                return preds

            t2_manp = t1_manp
            mp_dict = {
                f'{dset[1]}_C2' : c2_manp,
                f'{dset[1]}_C3' : c3_manp,
                f'{dset[1]}_T1' : t1_manp,
                f'{dset[1]}_T2' : t2_manp,
                f'{dset[1]}_C4' : c3_manp
            }

            image_dict = get_image_dict(dataset_paths, allowed = allowed, USE_ACR = False, acr_cat = None, mp_dict = mp_dict)
            image_dict = apply_merge(image_dict, METHOD = 'nms', weights= weights, conf_type='absent_model_aware_avg')
            

            senses, fps = calc_froc_from_dict(image_dict, fps_req = [0.025,0.05,0.1,0.15,0.2,0.3,1.], save_to = os.path.join(num_dir, f'{title}.txt'))


        # Lets plot now

        GRAPHS = [
            ('Bilateral','Baseline'),
            ('Contrast','Baseline'),
            ('Threshold','Baseline'),
            ('Proposed','Baseline'),
            ('Proposed', 'Bilateral'),
            ('Proposed', 'Contrast'),
            ('Proposed', 'Threshold'),
        ]


        # Now handle the directories
        graph_dir = os.path.join(graphs_dir, dset[1], test_split)
        os.makedirs(graph_dir, exist_ok=True)

        for graph in GRAPHS:
            if graph[0] not in CONFIGS or graph[1] not in CONFIGS: continue
            file_name1 = f'{CONFIGS[graph[0]][0]}.txt'
            file_name2 = f'{CONFIGS[graph[1]][0]}.txt'

            title1 = CONFIGS[graph[0]][0]
            title2 = CONFIGS[graph[1]][0]

            plot_froc({
                join(num_dir, file_name1): title1,
                join(num_dir, file_name2) : title2,
            }, join(graph_dir,f'{title1}_vs_{title2}.png'),f'{title1} vs {title2} FROC', CLIP_FPI = 0.3 if dset[0] == 'IRCHVal' else 0.8)