|
import torch |
|
import math |
|
from advanced_logger import LogPriority |
|
from dataloaders import get_FRCNN_dataloaders |
|
from models import get_FRCNN_model |
|
from detection.engine import evaluate_loss, evaluate_simplified, train_one_epoch_simplified, evaluate_simplified |
|
|
|
def main(cfg, experimenter): |
|
|
|
LR = cfg['LR'] |
|
WEIGHT_DECAY = cfg['WEIGHT_DECAY'] |
|
NUM_EPOCHS = cfg['NUM_EPOCHS'] |
|
BATCH_SIZE = cfg['BATCH_SIZE'] |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = get_FRCNN_model().to(device) |
|
train_loader, val_loader = get_FRCNN_dataloaders(experimenter.config, batch_size=BATCH_SIZE, data_dir = experimenter.config['DATA_DIR']) |
|
optimizer = torch.optim.SGD(model.parameters(),lr=LR,momentum=0.9,weight_decay=WEIGHT_DECAY) |
|
|
|
for epoch in range(NUM_EPOCHS): |
|
experimenter.start_epoch() |
|
train_one_epoch_simplified(model, optimizer, train_loader, device, epoch, experimenter = experimenter) |
|
evaluate_simplified(model, val_loader, device=device, experimenter = experimenter) |
|
loss = evaluate_loss(model, device, val_loader, experimenter = experimenter) |
|
experimenter.log('Validation Loss: {}'.format(loss), priority = LogPriority.MEDIUM) |
|
experimenter.end_epoch(loss, model = model, device = device) |
|
experimenter.save_model(model) |
|
experimenter.generate_predictions(model, device) |
|
|
|
if __name__ == '__main__': |
|
from experimenter import Experimenter |
|
cfg_file = 'configs/AIIMS_C1.cfg' |
|
experimenter = Experimenter(cfg_file) |
|
main(experimenter.config['FRCNN'], experimenter) |