Pranjal2041's picture
Initial demo
970a7a2
import torch
import math
from advanced_logger import LogPriority
from dataloaders import get_FRCNN_dataloaders
from models import get_FRCNN_model
from detection.engine import evaluate_loss, evaluate_simplified, train_one_epoch_simplified, evaluate_simplified
def main(cfg, experimenter):
LR = cfg['LR']
WEIGHT_DECAY = cfg['WEIGHT_DECAY']
NUM_EPOCHS = cfg['NUM_EPOCHS']
BATCH_SIZE = cfg['BATCH_SIZE']
device = "cuda" if torch.cuda.is_available() else "cpu"
model = get_FRCNN_model().to(device)
train_loader, val_loader = get_FRCNN_dataloaders(experimenter.config, batch_size=BATCH_SIZE, data_dir = experimenter.config['DATA_DIR'])
optimizer = torch.optim.SGD(model.parameters(),lr=LR,momentum=0.9,weight_decay=WEIGHT_DECAY)
for epoch in range(NUM_EPOCHS):
experimenter.start_epoch()
train_one_epoch_simplified(model, optimizer, train_loader, device, epoch, experimenter = experimenter)
evaluate_simplified(model, val_loader, device=device, experimenter = experimenter)
loss = evaluate_loss(model, device, val_loader, experimenter = experimenter)
experimenter.log('Validation Loss: {}'.format(loss), priority = LogPriority.MEDIUM)
experimenter.end_epoch(loss, model = model, device = device)
experimenter.save_model(model)
experimenter.generate_predictions(model, device)
if __name__ == '__main__':
from experimenter import Experimenter
cfg_file = 'configs/AIIMS_C1.cfg'
experimenter = Experimenter(cfg_file)
main(experimenter.config['FRCNN'], experimenter)