Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
import json
|
5 |
+
from paddleocr import PaddleOCR
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Initialize PaddleOCR
|
10 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
11 |
+
|
12 |
+
# Function to draw bounding boxes on the image
|
13 |
+
def draw_boxes_on_image(image, data):
|
14 |
+
# Convert the image to RGB (OpenCV uses BGR by default)
|
15 |
+
image_rgb = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
|
16 |
+
|
17 |
+
# Load the image into PIL for easier drawing
|
18 |
+
pil_image = Image.fromarray(image_rgb)
|
19 |
+
draw = ImageDraw.Draw(pil_image)
|
20 |
+
|
21 |
+
# Define a font (using DejaVuSans since it's available by default)
|
22 |
+
try:
|
23 |
+
font = ImageFont.truetype("DejaVuSans.ttf", 20)
|
24 |
+
except IOError:
|
25 |
+
font = ImageFont.load_default()
|
26 |
+
|
27 |
+
for item in data:
|
28 |
+
bounding_box, (text, confidence) = item
|
29 |
+
|
30 |
+
# Convert bounding box to integer
|
31 |
+
box = np.array(bounding_box).astype(int)
|
32 |
+
|
33 |
+
# Draw the bounding box
|
34 |
+
draw.line([tuple(box[0]), tuple(box[1])], fill="green", width=2)
|
35 |
+
draw.line([tuple(box[1]), tuple(box[2])], fill="green", width=2)
|
36 |
+
draw.line([tuple(box[2]), tuple(box[3])], fill="green", width=2)
|
37 |
+
draw.line([tuple(box[3]), tuple(box[0])], fill="green", width=2)
|
38 |
+
|
39 |
+
# Draw the text above the bounding box
|
40 |
+
text_position = (box[0][0], box[0][1] - 20)
|
41 |
+
draw.text(text_position, f"{text} ({confidence:.2f})", fill="red", font=font)
|
42 |
+
|
43 |
+
return pil_image
|
44 |
+
|
45 |
+
# Function to save OCR results to JSON
|
46 |
+
def save_results_to_json(ocr_results):
|
47 |
+
results = []
|
48 |
+
|
49 |
+
for line in ocr_results:
|
50 |
+
for word_info in line:
|
51 |
+
bounding_box = word_info[0]
|
52 |
+
text, confidence = word_info[1]
|
53 |
+
results.append({
|
54 |
+
"bounding_box": [list(map(float, coord)) for coord in bounding_box],
|
55 |
+
"text": text,
|
56 |
+
"confidence": confidence
|
57 |
+
})
|
58 |
+
|
59 |
+
return results
|
60 |
+
|
61 |
+
# Function to identify 'field', 'value' pairs
|
62 |
+
def identify_field_value_pairs(ocr_results, fields):
|
63 |
+
field_value_pairs = {}
|
64 |
+
for line in ocr_results:
|
65 |
+
for word_info in line:
|
66 |
+
text, _ = word_info[1]
|
67 |
+
for field in fields:
|
68 |
+
if field.lower() in text.lower():
|
69 |
+
# Assuming the value comes immediately after the field
|
70 |
+
value_index = line.index(word_info) + 1
|
71 |
+
if value_index < len(line):
|
72 |
+
field_value_pairs[field] = line[value_index][1][0]
|
73 |
+
break
|
74 |
+
return field_value_pairs
|
75 |
+
|
76 |
+
# Function to process the image and generate outputs
|
77 |
+
def process_image(image):
|
78 |
+
ocr_results = ocr.ocr(np.array(image), cls=True)
|
79 |
+
processed_image = draw_boxes_on_image(image, ocr_results[0])
|
80 |
+
|
81 |
+
# Save OCR results to JSON
|
82 |
+
results_json = save_results_to_json(ocr_results[0])
|
83 |
+
json_path = "ocr_results.json"
|
84 |
+
with open(json_path, 'w') as json_file:
|
85 |
+
json.dump(results_json, json_file, indent=4)
|
86 |
+
|
87 |
+
# Identify field-value pairs
|
88 |
+
fields = ["Scheme Name", "Folio Number", "Number of Units", "PAN", "Signature", "Tax Status",
|
89 |
+
"Mobile Number", "Email", "Address", "Bank Account Details"]
|
90 |
+
field_value_pairs = identify_field_value_pairs(ocr_results[0], fields)
|
91 |
+
field_value_json_path = "field_value_pairs.json"
|
92 |
+
with open(field_value_json_path, 'w') as json_file:
|
93 |
+
json.dump(field_value_pairs, json_file, indent=4)
|
94 |
+
|
95 |
+
return processed_image, json_path, field_value_json_path
|
96 |
+
|
97 |
+
# Gradio Interface
|
98 |
+
interface = gr.Interface(
|
99 |
+
fn=process_image,
|
100 |
+
inputs="image",
|
101 |
+
outputs=[
|
102 |
+
"image",
|
103 |
+
gr.File(label="OCR Results JSON"),
|
104 |
+
gr.File(label="Field-Value Pairs JSON")
|
105 |
+
],
|
106 |
+
title="OCR Web Application",
|
107 |
+
description="Upload an image and get OCR results with bounding boxes and two JSON outputs."
|
108 |
+
)
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
interface.launch()
|